Skip to content

Files

Latest commit

e7bff23 · Oct 24, 2024

History

History
289 lines (219 loc) · 13 KB

README.md

File metadata and controls

289 lines (219 loc) · 13 KB

FMAE-IAT

PWC PWC PWC PWC PWC

This is the codebase for our paper Representation Learning and Identity Adversarial Training for Facial Behavior Understanding

@misc{ning2024representation,
    title={Representation Learning and Identity Adversarial Training for Facial Behavior Understanding},
    author={Mang Ning and Albert Ali Salah and Itir Onal Ertugrul},
    year={2024},
    eprint={2407.11243},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

The code has been tested on A100 GPU.

Installation

for AU finetune and pretraining, we use pytorch 1.8.0

conda craete -n mae python==3.8
conda activate mae
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install timm==0.3.2
pip install tensorboard
pip install lmdb
pip install scikit-learn

for ID linear probing, we use pytorch 1.11.0 (1.8.0 has an issue with AdamW when freezing some layers)

conda craete -n mae_lb python==3.9
conda activate mae_lb
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip install timm==0.3.2
pip install tensorboard
pip install lmdb
pip install scikit-learn
  • This repo is based on timm==0.3.2, for which a fix is needed to work with PyTorch 1.8.1+.

Catalog

  • FMAE pretraining by MAE
  • Finetune FMAE and FMAE-IAT on AU benchmarks
    • BP4D
    • BP4D+
    • DISFA
  • Finetune FMAE on FER benchmarks
  • ID linear probing

FMAE pretraining

To use code, checkout to branch mae_pretraining

The following table provides the Face9M pre-trained checkpoints:

FMAE ViT-large ViT-base ViT-small
pretrained ckpt download download download

The pretraining settings are:

ViT-small (use --resume if necessary)

2 A100 GPUs, batch_size=512

python submitit_pretrain.py \
--job_dir exp_mae_pretrain_vit-S --nodes 1 --ngpus 2 \
--batch_size 256 --epochs 50 --warmup_epochs 2 \
--model mae_vit_small_patch16 --data_path YOUR_DATASET_PATH \
--norm_pix_loss --mask_ratio 0.75 --blr 1.5e-4 --weight_decay 0.05 \
--resume RESUME_CKPT --start_epoch RESUME_EPOCH \

ViT-base

2 A100 GPUs, batch_size=512

python submitit_pretrain.py \
--job_dir exp_mae_pretrain --nodes 1 --ngpus 2 \
--batch_size 256 --epochs 50 --warmup_epochs 2 \
--model mae_vit_base_patch16 --data_path YOUR_DATASET_PATH \
--norm_pix_loss --mask_ratio 0.75 --blr 1.5e-4 --weight_decay 0.05 \

ViT-large

4 A100 GPUs, batch_size=512

python submitit_pretrain.py \
--job_dir exp_mae_pretrain_vit-L --nodes 1 --ngpus 4 \
--batch_size 128 --epochs 50 --warmup_epochs 2 \
--model mae_vit_large_patch16 --data_path YOUR_DATASET_PATH \
--norm_pix_loss --mask_ratio 0.75 --blr 1.5e-4 --weight_decay 0.05 \

Finetune FMAE and FMAE-IAT on AU benchmarks

You can downlaod our ViT-large model for finetune FMAE or FMAE-IAT on AU datasets.

We use json file to contain the AU labels. ID labels are inclueded in the image filename and would be automatically extracted. A template json label looks like (999 stands for the non-existance of this AU):

For reproducibility, we set random seeds (use 0/1/2) for all experiments and share our cross-fold settings.

BP4D

To use code, checkout to branch BP4D_and_BP4Dplus (Note that branch BP4D_ID_head_ablation is used for ablation)

we provide the FMAE-IAT model trained on BP4D below:

FMAE-IAT (ViT-large) fold 1 fold 2 fold 3
finetuned ckpt download download download

Our subject partitions of BP4D and DISFA follow the paper 'Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection'

finetune FMAE

python BP4D_finetune.py --seed 0/1/2 --grad_reverse 0 --save_ckpt False \
--blr 0.0002 --batch_size 64 --epochs 20 --warmup_epochs 2 --nb_classes 12 --nb_subjects 41 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--root_path BP4D_DATASET \
--train_path FOLD_1_TRAIN_JSON \
--test_path FOLD_1_TEST_JSON \
--output_dir ./exp_BP4D_finetune_vit_L --log_dir ./exp_BP4D_finetune_vit_L

finetune FMAE-IAT (lambda=2)

python BP4D_finetune.py --seed 0/1/2 --grad_reverse 2 --save_ckpt False \
--blr 0.0005 --batch_size 64 --epochs 30 --warmup_epochs 3 --nb_classes 12 --nb_subjects 41 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--root_path BP4D_DATASET \
--train_path FOLD_1_TRAIN_JSON \
--test_path FOLD_1_TEST_JSON \
--output_dir ./exp_BP4D_ID_adversarial_ckpt32 --log_dir ./exp_BP4D_ID_adversarial_ckpt32

results img.png

BP4D+

To use code, checkout to branch BP4D_and_BP4Dplus

we randomly split the subjects into 4 folds, 3 folds used for training and 1 for testing.

BP4D+ subjects
fold-1 'M040', 'F072', 'M015', 'M029', 'M003', 'F076', 'F053', 'F026', 'F044', 'F066', 'F057', 'F061', 'F071', 'M050', 'M033', 'F079', 'F020', 'M025', 'F014', 'F004', 'F013', 'M017', 'F033', 'M042', 'M004', 'F038', 'F019', 'M036', 'M026', 'M048', 'F039', 'F046', 'M051', 'F047', 'M020'
fold-2 'F074', 'F012', 'F034', 'M001', 'F056', 'F075', 'M009', 'M038', 'F024', 'M047', 'F016', 'M045', 'M034', 'M022', 'F060', 'M011', 'M044', 'M046', 'M005', 'M028', 'F077', 'F028', 'M055', 'M019', 'F032', 'F030', 'M037', 'M043', 'F031', 'F022', 'M023', 'M018', 'M016', 'F065', 'M052'
fold-3 'F029', 'F054', 'F064', 'F045', 'F009', 'F040', 'F008', 'M041', 'F063', 'M056', 'M024', 'F001', 'F080', 'M010', 'F062', 'F035', 'M054', 'F052', 'F027', 'F043', 'F042', 'F050', 'M057', 'F078', 'F058', 'F017', 'M035', 'M030', 'M027', 'F021', 'M031', 'F069', 'F002', 'M008', 'F068'
fold-4 'M058', 'F037', 'F010', 'F023', 'M007', 'M002', 'F025', 'F073', 'F048', 'F041', 'F051', 'F011', 'M032', 'F005', 'M021', 'F018', 'M013', 'M049', 'M014', 'F070', 'F006', 'F067', 'M039', 'M006', 'F059', 'F003', 'F007', 'F049', 'M053', 'F081', 'F055', 'M012', 'F082', 'F015', 'F036'

finetune FMAE

python BP4D_plus_finetune.py --seed 0/1/2 --grad_reverse 0 --save_ckpt False \
--blr 0.0005 --batch_size 64 --epochs 20 --warmup_epochs 2 --nb_classes 12 --nb_subjects 140 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--root_path BP4D+_DATASET \
--train_path FOLD_1_TRAIN_JSON \
--test_path FOLD_1_TEST_JSON \
--output_dir ./exp_BP4D_plus_finetune_vit_L --log_dir ./exp_BP4D_plus_finetune_vit_L

finetune FMAE-IAT (lambda=1)

python BP4D_plus_finetune.py --seed 0/1/2 --grad_reverse 1 --save_ckpt False \
--blr 0.0005 --batch_size 64 --epochs 30 --warmup_epochs 3 --nb_classes 12 --nb_subjects 140 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--root_path BP4D+_DATASET \
--train_path FOLD_1_TRAIN_JSON \
--test_path FOLD_1_TEST_JSON \
--output_dir ./exp_BP4D_plus_ID_adversarial --log_dir ./exp_BP4D_plus_ID_adversarial

results img.png

DISFA

To use code, checkout to branch DISFA_finetune_or_ID_adversarial

finetune FMAE

python DISFA_finetune.py --seed 0/1/2 --grad_reverse 0 --save_ckpt False \
--blr 0.0005 --batch_size 64 --epochs 20 --warmup_epochs 2 --nb_classes 8 --nb_subjects 27 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--root_path DISFA_DATASET \
--train_path FOLD_1_TRAIN_JSON \
--test_path FOLD_1_TEST_JSON \
--output_dir ./exp_DISFA_finetune_vit_L --log_dir ./exp_DISFA_finetune_vit_L

finetune FMAE-IAT (lambda=0.5)

python DISFA_finetune.py --seed 0/1/2 --grad_reverse 0.5 --save_ckpt False \
--blr 0.0005 --batch_size 64 --epochs 20 --warmup_epochs 2 --nb_classes 8 --nb_subjects 27 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--root_path DISFA_DATASET \
--train_path FOLD_1_TRAIN_JSON \
--test_path FOLD_1_TEST_JSON \
--output_dir ./exp_DISFA_finetune_adversarial --log_dir ./exp_DISFA_finetune_adversarial

results img.png

Finetune FMAE on FER benchmarks

RAF-DB

To use code, checkout to branch RAFDB_finetune

finetune FMAE

python RAFDB_finetune.py --seed 0/1/2 --blr 0.001 --nb_classes 7 \
--batch_size 32 --epochs 60 --warmup_epochs 6 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--train_path TRAIN_IMG_FOLDER \
--test_path TEST_IMG_FOLDER \
--output_dir ./exp_RAFDB_finetune_vit_L --log_dir ./exp_RAFDB_finetune_vit_L

AffectNet-8

To use code, checkout to branch AffectNet_finetune

finetune FMAE

python AffectNet_finetune.py --seed 0/1/2  --nb_classes 8 \
--blr 0.0005 --batch_size 64 --accum_iter 1 --epochs 30 --warmup_epochs 3 \
--model vit_large_patch16 --finetune (ViT-large_ckpt) \
--train_path TRAIN_IMG_FOLDER \
--test_path TEST_IMG_FOLDER \
--output_dir ./exp_AffectNet8_finetune_vit_L --log_dir ./exp_AffectNet8_finetune_vit_L

Identity Linear probing

To use code, checkout to branch BP4D_ID_linear_prob

After training your FMAE/FMAE-IAT model and saved its ckpt, use the ckpt for identity linear probing.

linear probing of FMAE/FMAE-IAT on BP4D

python BP4D_finetune.py --seed 0 --nb_classes 41 \
--blr 0.0002 --batch_size 64 --epochs 20 --warmup_epochs 2 \
--model vit_large_patch16 --finetune YOUR FMAE/FMAE-IAT CKPT \
--root_path BP4D_DATASET \
--train_path LINEAR_PROB_TRAIN_JSON \
--test_path LINEAR_PROB_TEST_JSON \
--output_dir ./exp_BP4D_linear_prob --log_dir ./exp_BP4D_linear_prob