-
Notifications
You must be signed in to change notification settings - Fork 11
/
perception_todo_3.py
96 lines (71 loc) · 2.51 KB
/
perception_todo_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import cv2
import time
from modules.sensors.proto.sensor_image_pb2 import Image
from cyber_py import cyber
import sys
sys.path.append("../")
# roll
src_corners = [[191, 223], [272, 223], [182, 269], [297, 269]]
# turn to
dst_corners = [[152, 270], [267, 270], [152, 339], [267, 339]]
M = cv2.getPerspectiveTransform(
np.float32(src_corners), np.float32(dst_corners))
def perspective_transform(image, m, img_size=None):
if img_size is None:
img_size = (image.shape[1], image.shape[0])
warped = cv2.warpPerspective(image, m, img_size, flags=cv2.INTER_LINEAR)
return warped
class Exercise(object):
def __init__(self, node):
self.node = node
self.msg = Image()
# TODO create reader
self.node.create_reader(
"/realsense/compressed_image", Image, self.callback)
# TODO create writer
self.writer = self.node.create_writer(
"/perception/vertical_view", Image)
def callback(self, data):
# TODO
print(data.frame_no)
# TODO reshape
self.reshape(data)
# TODO publish, write to channel
self.write_to_channel()
def write_to_channel(self):
# TODO
self.writer.write(self.msg)
def reshape(self, data):
# TODO e begin
new_image = np.frombuffer(data.data, dtype=np.uint8)
new_image = cv2.imdecode(new_image, cv2.IMREAD_COLOR)
# TODO e end
img = cv2.resize(new_image, (424, 408))
wrap_img = perspective_transform(img, M, img_size=(444, 343))
# TODO f begin
gray_d = cv2.cvtColor(wrap_img, cv2.COLOR_BGR2GRAY)
# TODO f end
# TODO h begin, threshold
wrap_img = cv2.threshold(gray_d, 100, 220, cv2.THRESH_BINARY_INV)[1]
# TODO h end
# TODO i begin
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
img_d = cv2.erode(wrap_img, kernel, iterations=2)
wrap_img = cv2.dilate(img_d, kernel, iterations=3)
# TODO i end
img_param = [int(cv2.IMWRITE_JPEG_QUALITY), 30]
img_encode = cv2.imencode('.jpeg', wrap_img, img_param)[1]
data_encode = np.array(img_encode)
str_encode = data_encode.tostring()
data.data = str_encode
self.msg = data
if __name__ == '__main__':
cyber.init()
# TODO update node to your name
exercise_node = cyber.Node("threshold")
exercise = Exercise(exercise_node)
exercise_node.spin()
cyber.shutdown()