-
Notifications
You must be signed in to change notification settings - Fork 0
/
qualipredictionmodel.py
38 lines (25 loc) · 1.12 KB
/
qualipredictionmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#import fastf1 as ff1
#from fastf1 import plotting
#from fastf1 import utils
from matplotlib import pyplot as plt
from matplotlib.pyplot import figure
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
from scipy.interpolate import UnivariateSpline
#-------------------------------------
traction = np.array([4,2,2,5,3,5,3,5,2,3,4,4,4,3,4,3])
track_evolution = np.array([4,4,4,5,5,5,3,5,3,2,4,3,4,3,4,3])
braking = np.array([4,2,2,4,3,2,3,5,3,2,3,4,3,4,5,2])
asphalt_grip = np.array([3,3,3,1,3,1,3,1,3,3,3,3,2,2,3,3])
lateral = np.array([3,3,3,1,3,1,5,1,3,5,3,5,4,2,2,5])
asphalt_abrasion = np.array([5,2,2,1,2,1,4,2,4,3,2,4,3,3,3,4])
tire_stress = np.array([3,3,3,3,3,1,5,3,3,5,3,5,5,3,2,5])
downforce = np.array([3,2,3,1,2,5,4,1,3,4,5,2,4,1,5,4])
tires = np.array([1,2,2,3,2,3,1,3,3,1,3,2,1,3,3,1])
LECgap = np.array([0.292, 0.155, 0.637, 0, 1.02, 0.106, 0.464, 1.523, 0.048, 0.416, 0.383, 0.82, 2.098, 0.067, 0.079, 0.665])
LECfin = np.array([-1, 7, -1, 3,7,6,11,4,2,9,7,3,-1,4,4,4])
#tire_stress_LECgap = np.column_stack([])
plt.plot(lateral, LECfin, 'o')
#plt.plot(downforce, LECfin, 'o')
plt.show()