forked from gidariss/FeatureLearningRotNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_cifar10_semi_supervised_experiments.sh
executable file
·28 lines (25 loc) · 1.68 KB
/
run_cifar10_semi_supervised_experiments.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#!/bin/bash
echo "Run semi supervised experiments"
# Train a conv-based classifier on top of the feature maps of the 2nd conv. block of a NIN-based RotNet model
# trained on the entire training set of CIFAR10.
# Use K=5000 training examples per category (which is equal to using the entire training set).
# CUDA_VISIBLE_DEVICES=2 python main.py --exp=CIFAR10_ConvClassifier_on_RotNet_NIN4blocks_Conv2_feats
# Use K=1000 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_ConvClassifier_on_RotNet_NIN4blocks_Conv2_feats_K1000
# Use K=400 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_ConvClassifier_on_RotNet_NIN4blocks_Conv2_feats_K400
# Use K=100 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_ConvClassifier_on_RotNet_NIN4blocks_Conv2_feats_K100
# Use K=400 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_ConvClassifier_on_RotNet_NIN4blocks_Conv2_feats_K20
# Train fully supervised NIN models using subsets of the CIFAR10 training set.
# Use K=5000 training examples per category (which is equal to using the entire training set).
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_supervised_NIN #
# Use K=1000 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_supervised_NIN_K1000
# Use K=400 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_supervised_NIN_K400
# Use K=100 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_supervised_NIN_K100
# Use K=20 training examples per category.
CUDA_VISIBLE_DEVICES=0 python main.py --exp=CIFAR10_supervised_NIN_K20