Skip to content

Latest commit

 

History

History
276 lines (227 loc) · 14 KB

README.md

File metadata and controls

276 lines (227 loc) · 14 KB

Build Status PyPI version License Imports: pandas

Statistical Association Measures for Python pandas

Association measures are mathematical formulae that interpret cooccurrence frequency data. For each pair of words extracted from a corpus, they compute an association score, a single real value that indicates the amount of (statistical) association between the two words.

http://www.collocations.de/AM/index.html

Installation

Dependencies
Installation using pip
python3 -m pip install association-measures
Installation from source (requires Cython)
# Compile Cython code
python3 setup.py build_ext --inplace

# Cython already compiled
python3 setup.py install

Usage

Input

The module expects a pandas dataframe with reasonably named columns; i.e. the columns must follow one of the following notations:

contingency table

>>> df
            item  O11    O12  O21     O22
1    appreciated    1  15333    1  176663
2        certain    7  15327  113  176551
3      measuring    1  15333    7  176657
4   particularly    2  15332   45  176619
5        arrived    2  15332    3  176661

frequency signature (see Evert 2008: Figure 8)

>>> df
            item  f     f1   f2       N
1    appreciated  1  15334    2  191998
2        certain  7  15334  120  191998
3      measuring  1  15334    8  191998
4   particularly  2  15334   47  191998
5        arrived  2  15334    5  191998

where f=O11, f1=O11+O12, f2=O11+O21, N=O11+O12+O21+O22.

corpus frequencies (“keyword-friendly”)

>>> df
            item  f1     N1   f2      N2
1    appreciated   1  15334    1  176664
2        certain   7  15334  113  176664
3      measuring   1  15334    7  176664
4   particularly   2  15334   45  176664
5        arrived   2  15334    3  176664

where f1=O11, f2=O21, N1=O11+O12, N2=O21+O22.

Observed and Expected Frequencies

Given a dataframe following one of the notations specified above, you can calculate expected frequencies via

>>> import association_measures.frequencies as fq
>>> fq.expected_frequencies(df)
         E11           E12         E21            E22
1   0.159731  15333.840269    1.840269  176662.159731
2   9.583850  15324.416150  110.416150  176553.583850
3   0.638923  15333.361077    7.361077  176656.638923
4   3.753675  15330.246325   43.246325  176620.753675
5   0.399327  15333.600673    4.600673  176659.399327

The observed_frequency method will convert to contingency notation:

>>> import association_measures.frequencies as fq
>>> fq.observed_frequencies(df)
    O11    O12  O21     O22
1     1  15333    1  176663
2     7  15327  113  176551
3     1  15333    7  176657
4     2  15332   45  176619
5     2  15332    3  176661

Note that all methods return dataframes that are indexed the same way the input dataframe is indexed:

>>> df
              f     f1   f2       N
item
appreciated   1  15334    2  191998
certain       7  15334  120  191998
measuring     1  15334    8  191998
particularly  2  15334   47  191998
arrived       2  15334    5  191998
>>> fq.observed_frequencies(df)
              O11    O12  O21     O22
item
appreciated     1  15333    1  176663
certain         7  15327  113  176551
measuring       1  15333    7  176657
particularly    2  15332   45  176619
arrived         2  15332    3  176661

You can thus join the results directly to the input.

Association Measures

The following association measures are currently implemented (v0.2.2):

  • asymptotic hypothesis tests:
    • z-score (z_score)
    • t-score (t_score)
      • parameter: disc
    • Dunning's log-likelihood ratio (log_likelihood)
      • parameter: signed
    • simple-ll (simple_ll)
      • parameter: signed
  • point estimates of association strength:
    • Liddell (liddell)
    • minimum sensitivity (min_sensitivity)
    • log-ratio (log_ratio)
      • parameters: disc, discounting
    • Dice coefficient (dice)
  • information theory:
    • mutual information (mutual_information)
      • parameter: disc
    • local mutual information (local_mutual_information)
  • conservative estimates
    • conservative log-ratio (conservative_log_ratio)
      • parameters: disc, alpha, correct, one_sided, boundary, vocab

You can either calculate specific measures:

>>> import association_measures.measures as am
>>> am.log_likelihood(df)
item
appreciated      2.448757
certain         -0.829802
measuring        0.191806
particularly    -1.059386
arrived          3.879126

This assumes that df contains the necessary columns (observed frequencies in contingency notation and expected frequencies). In most cases, it is most convenient to just use score():

>>> import association_measures.measures as am
>>> am.score(df, measures=['log_likelihood'])
              O11    O12  O21     O22     R1      R2   C1      C2       N       E11           E12         E21            E22  log_likelihood         ipm  ipm_reference  ipm_expected
item                                                                                                                                                                                 
appreciated     1  15333    1  176663  15334  176664    2  191996  191998  0.159731  15333.840269    1.840269  176662.159731        2.448757   65.214556       5.660463     10.416775
certain         7  15327  113  176551  15334  176664  120  191878  191998  9.583850  15324.416150  110.416150  176553.583850       -0.829802  456.501891     639.632296    625.006510
measuring       1  15333    7  176657  15334  176664    8  191990  191998  0.638923  15333.361077    7.361077  176656.638923        0.191806   65.214556      39.623240     41.667101
particularly    2  15332   45  176619  15334  176664   47  191951  191998  3.753675  15330.246325   43.246325  176620.753675       -1.059386  130.429112     254.720826    244.794217
arrived         2  15332    3  176661  15334  176664    5  191993  191998  0.399327  15333.600673    4.600673  176659.399327        3.879126  130.429112      16.981388     26.041938

Note that by default, score() yields observed frequencies in contingency notation (and marginal frequencies) as well as expected frequencies. You can turn off this behaviour setting freq=False.

To calculate all available measures, don't specify any measures:

>>> am.score(df, freq=False)
               z_score   t_score  log_likelihood  simple_ll  min_sensitivity   liddell      dice  log_ratio  binomial_likelihood  conservative_log_ratio  mutual_information  local_mutual_information
item
appreciated   2.102442  0.840269        2.448757   1.987992         0.000065  0.420139  0.000130   3.526202             0.000000                     0.0            0.796611                  0.796611
certain      -0.834636 -0.976603       -0.829802  -0.769331         0.000457 -0.021546  0.000906  -0.486622             0.117117                     0.0           -0.136442                 -0.955094
measuring     0.451726  0.361077        0.191806   0.173788         0.000065  0.045136  0.000130   0.718847             0.000000                     0.0            0.194551                  0.194551
particularly -0.905150 -1.240035       -1.059386  -0.988997         0.000130 -0.037321  0.000260  -0.965651             0.224042                     0.0           -0.273427                 -0.546853
arrived       2.533018  1.131847        3.879126   3.243141         0.000130  0.320143  0.000261   2.941240             0.000000                     0.0            0.699701                  1.399402

You can also pass constant integer counts as parameters to score(). This is reasonable for the following notations:

  • frequency signature: integers f1 and N (DataFrame contains columns f and f2)

    >>> df
                  f   f2
    item
    appreciated   1    2
    certain       7  120
    measuring     1    8
    particularly  2   47
    arrived       2    5
    >>> am.score(df, f1=15334, N=191998)
  • corpus frequencies: integers N1 and N2 (DataFrame contains columns f1 and f2)

    >>> df
                  f1   f2
    item
    appreciated    1    1
    certain        7  113
    measuring      1    7
    particularly   2   45
    arrived        2    3
    >>> am.score(df, N1=15334, N2=176664)

Some association measures have parameters (see above). You can pass these parameters as keywords to score(), e.g.:

>>> am.score(df, measures=['log_likelihood'], signed=False, freq=False)
              log_likelihood
item
appreciated         2.448757
certain             0.829802
measuring           0.191806
particularly        1.059386
arrived             3.879126

Topographic Maps

New since version 0.3: You can use association_measures.grid.topography to create a dataframe for visualising association measures in terms of topographic maps. It yields a lograthmically scaled grid from N1 to N2 with values of all association measures at resaonable sampling points of all combinations of f1 and f2.

>>> from association_measures.grids import topography
>>> topography(N1=10e6, N2=10e6)
            O11         O12       O21         O22          R1          R2        C1          C2           N         E11  ...      dice  log_ratio  conservative_log_ratio  mutual_information  local_mutual_information        ipm  ipm_reference  ipm_expected  clr_normal  log_ratio_hardie
index                                                                                                                    ...                                                                                                                                                                 
0             0  10000000.0         0  10000000.0  10000000.0  10000000.0         0  20000000.0  20000000.0         0.0  ...  0.000000   0.000000                0.000000                 inf                       NaN        0.0            0.0          0.00    0.000000          0.000000
1             0  10000000.0         1   9999999.0  10000000.0  10000000.0         1  19999999.0  20000000.0         0.5  ...  0.000000  -9.967226                0.000000           -2.698970                  0.000000        0.0            0.1          0.05    0.000000         -9.965784
2             0  10000000.0         2   9999998.0  10000000.0  10000000.0         2  19999998.0  20000000.0         1.0  ...  0.000000 -10.966505                0.000000           -3.000000                  0.000000        0.0            0.2          0.10    0.000000        -10.965784
3             0  10000000.0         3   9999997.0  10000000.0  10000000.0         3  19999997.0  20000000.0         1.5  ...  0.000000 -11.551228                0.000000           -3.176091                 -0.000000        0.0            0.3          0.15    0.000000        -11.550747
4             0  10000000.0         4   9999996.0  10000000.0  10000000.0         4  19999996.0  20000000.0         2.0  ...  0.000000 -11.966145                0.000000           -3.301030                 -0.000000        0.0            0.4          0.20    0.000000        -11.965784
...         ...         ...       ...         ...         ...         ...       ...         ...         ...         ...  ...       ...        ...                     ...                 ...                       ...        ...            ...           ...         ...               ...
39995  10000000         0.0   7205937   2794063.0  10000000.0  10000000.0  17205937   2794063.0  20000000.0   8602968.5  ...  0.735134   0.472742                0.468813            0.065352             653516.672773  1000000.0       720593.7     860296.85    0.471159          0.472742
39996  10000000         0.0   7821100   2178900.0  10000000.0  10000000.0  17821100   2178900.0  20000000.0   8910550.0  ...  0.718879   0.354557                0.350718            0.050095             500954.884892  1000000.0       782110.0     891055.00    0.353215          0.354557
39997  10000000         0.0   8488779   1511221.0  10000000.0  10000000.0  18488779   1511221.0  20000000.0   9244389.5  ...  0.702031   0.236371                0.232619            0.034122             341217.643897  1000000.0       848877.9     924438.95    0.235298          0.236371
39998  10000000         0.0   9213457    786543.0  10000000.0  10000000.0  19213457    786543.0  20000000.0   9606728.5  ...  0.684616   0.118186                0.114514            0.017424             174244.829132  1000000.0       921345.7     960672.85    0.117443          0.118186
39999  10000000         0.0  10000000         0.0  10000000.0  10000000.0  20000000         0.0  20000000.0  10000000.0  ...  0.666667   0.000000                0.000000            0.000000                  0.000000  1000000.0      1000000.0    1000000.00    0.000000          0.000000

[40000 rows x 29 columns]

Development

The package is tested using pylint and pytest.

# Installing dev requirements
make install

# Compile Cython code
make compile

# Lint
make lint

# Unittest
make test

# Coverage
make coverage

# Performance
make performance