diff --git a/NAMESPACE b/NAMESPACE index 9762000..70a9e4d 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -13,6 +13,7 @@ export(multimodel_count_regression) export(parallel_cca_permute) export(plot_cluster) export(plot_corr) +export(rootogram) export(sct) export(spatial_adjacency_matrix) export(spatial_gradient) diff --git a/README.Rmd b/README.Rmd index 50b1236..4f428c1 100644 --- a/README.Rmd +++ b/README.Rmd @@ -21,8 +21,7 @@ knitr::opts_chunk$set(

-We introduce STew, a multi-view representation learning method for -spatial transcriptomic data, to jointly characterize the gene expression variation and spatial information in the shared low-dimenion space in a scalable manner. STew will output distinct spatially informed cell gradients, robust clusters, and statistical goodness of model fit to reveal significant genes that reflect subtle spatial niches in complex tissues. +We introduce STew, a Spatial Transcriptomic multi-viEW representation learning method, or STew, to jointly characterize the gene expression variation and spatial information in the shared low-dimenion space in a scalable manner. STew will output distinct spatially informed cell gradients, robust clusters, and statistical goodness of model fit to reveal significant genes that reflect subtle spatial niches in complex tissues.

diff --git a/README.md b/README.md index 4f9765a..411f340 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ -# STew +# STew [![R-CMD-check](https://github.com/fanzhanglab/STew/actions/workflows/check-standard.yaml/badge.svg)](https://github.com/fanzhanglab/STew/actions/workflows/check-standard.yaml) ![](https://komarev.com/ghpvc/?username=fanzhanglab&style=flat-square&color=green) @@ -9,8 +9,8 @@

-We introduce STew, a multi-view representation learning method for -spatial transcriptomic data, to jointly characterize the gene expression +We introduce STew, a Spatial Transcriptomic multi-viEW representation +learning method, or STew, to jointly characterize the gene expression variation and spatial information in the shared low-dimenion space in a scalable manner. STew will output distinct spatially informed cell gradients, robust clusters, and statistical goodness of model fit to diff --git a/man/rootogram.Rd b/man/rootogram.Rd new file mode 100644 index 0000000..3d10cc0 --- /dev/null +++ b/man/rootogram.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rootogram.R +\name{rootogram} +\alias{rootogram} +\title{Desc} +\usage{ +rootogram(object, ...) +} +\arguments{ +\item{object}{Rootogram Object} + +\item{...}{and more} +} +\value{ +test +} +\description{ +Desc +}