-
Notifications
You must be signed in to change notification settings - Fork 7
/
inpainter_main.py
75 lines (72 loc) · 2.92 KB
/
inpainter_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from keras.callbacks import ModelCheckpoint, TensorBoard, CSVLogger
from inpainter_utils.pconv2d_data import DataGenerator, torch_preprocessing
from inpainter_utils.pconv2d_model import pconv_model
# SETTINGS:
IMG_DIR_TRAIN = "data/images/train/"
IMG_DIR_VAL = "data/images/validation/"
VGG16_WEIGHTS = 'data/vgg16_weights/vgg16_pytorch2keras.h5'
WEIGHTS_DIR = "callbacks/weights/"
TB_DIR = "callbacks/tensorboard/"
CSV_DIR = 'callbacks/csvlogger/'
BATCH_SIZE = 5
STEPS_PER_EPOCH = 2500
EPOCHS_STAGE1 = 70
EPOCHS_STAGE2 = 50
LR_STAGE1 = 0.0002
LR_STAGE2 = 0.00005
STEPS_VAL = 100
BATCH_SIZE_VAL = 4
IMAGE_SIZE = (512, 512)
STAGE_1 = True # Initial training if True, Fine-tuning if False
LAST_CHECKPOINT = WEIGHTS_DIR + "initial/weights.80-1.94-1.83.hdf5" # set this to be the path to the checkpoint from the last
# epoch on Stage 1, only needed if STAGE_1 was set to False
# DATA GENERATORS:
train_datagen = DataGenerator(preprocessing_function=torch_preprocessing, horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
IMG_DIR_TRAIN,
target_size=IMAGE_SIZE,
batch_size=BATCH_SIZE
)
val_datagen = DataGenerator(preprocessing_function=torch_preprocessing)
val_generator = val_datagen.flow_from_directory(
IMG_DIR_VAL,
target_size=IMAGE_SIZE,
batch_size=BATCH_SIZE_VAL,
seed=22,
mask_init_seed=1,
total_steps=STEPS_VAL,
shuffle=False
)
# TRAINING:
if STAGE_1:
# Stage 1: initial training
model = pconv_model(lr=LR_STAGE1, image_size=IMAGE_SIZE, vgg16_weights=VGG16_WEIGHTS)
model.fit_generator(
train_generator,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS_STAGE1,
validation_data=val_generator,
validation_steps=STEPS_VAL,
callbacks=[
CSVLogger(CSV_DIR + 'initial/log.csv', append=True),
TensorBoard(log_dir=TB_DIR + 'initial/', write_graph=True),
ModelCheckpoint(WEIGHTS_DIR + 'initial/weights.{epoch:02d}-{val_loss:.2f}-{loss:.2f}.hdf5', monitor='val_loss', verbose=1, save_weights_only=True)
]
)
else:
# Stage 2: fine-tuning
model = pconv_model(fine_tuning=True, lr=LR_STAGE2, image_size=IMAGE_SIZE, vgg16_weights=VGG16_WEIGHTS)
model.load_weights(LAST_CHECKPOINT)
model.fit_generator(
train_generator,
steps_per_epoch=STEPS_PER_EPOCH,
initial_epoch=EPOCHS_STAGE1,
epochs=EPOCHS_STAGE1 + EPOCHS_STAGE2,
validation_data=val_generator,
validation_steps=STEPS_VAL,
callbacks=[
CSVLogger(CSV_DIR + 'fine_tuning/log.csv', append=True),
TensorBoard(log_dir=TB_DIR + 'fine_tuning/', write_graph=True),
ModelCheckpoint(WEIGHTS_DIR + 'fine_tuning/weights.{epoch:02d}-{val_loss:.2f}-{loss:.2f}.hdf5', monitor='val_loss', verbose=1, save_weights_only=True)
]
)