From de00f967ce5fd720633c717252aae83b6f2b1602 Mon Sep 17 00:00:00 2001 From: Martino Mensio Date: Mon, 8 Jun 2020 19:26:30 +0100 Subject: [PATCH] adding spacy-universal-sentence-encoder (#5534) * adding spacy-universal-sentence-encoder * update affiliation * updated code example --- .github/contributors/MartinoMensio.md | 4 ++-- website/meta/universe.json | 24 ++++++++++++++++++++++++ 2 files changed, 26 insertions(+), 2 deletions(-) diff --git a/.github/contributors/MartinoMensio.md b/.github/contributors/MartinoMensio.md index 1cd32d62245..27e4536994b 100644 --- a/.github/contributors/MartinoMensio.md +++ b/.github/contributors/MartinoMensio.md @@ -99,8 +99,8 @@ mark both statements: | Field | Entry | |------------------------------- | -------------------- | | Name | Martino Mensio | -| Company name (if applicable) | Polytechnic University of Turin | -| Title or role (if applicable) | Student | +| Company name (if applicable) | The Open University | +| Title or role (if applicable) | PhD Student | | Date | 17 November 2017 | | GitHub username | MartinoMensio | | Website (optional) | https://martinomensio.github.io/ | diff --git a/website/meta/universe.json b/website/meta/universe.json index 58be719edd8..2c74a29641a 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -1,5 +1,29 @@ { "resources": [ + { + "id": "spacy-universal-sentence-encoder", + "title": "SpaCy - Universal Sentence Encoder", + "slogan": "Make use of Google's Universal Sentence Encoder directly within SpaCy", + "description": "This library lets you use Universal Sentence Encoder embeddings of Docs, Spans and Tokens directly from TensorFlow Hub", + "github": "MartinoMensio/spacy-universal-sentence-encoder-tfhub", + "code_example": [ + "import spacy_universal_sentence_encoder", + "load one of the models: ['en_use_md', 'en_use_lg', 'xx_use_md', 'xx_use_lg']", + "nlp = spacy_universal_sentence_encoder.load_model('en_use_lg')", + "# get two documents", + "doc_1 = nlp('Hi there, how are you?')", + "doc_2 = nlp('Hello there, how are you doing today?')", + "# use the similarity method that is based on the vectors, on Doc, Span or Token", + "print(doc_1.similarity(doc_2[0:7]))" + ], + "category": ["models", "pipeline"], + "author": "Martino Mensio", + "author_links": { + "twitter": "MartinoMensio", + "github": "MartinoMensio", + "website": "https://martinomensio.github.io" + } + }, { "id": "whatlies", "title": "whatlies",