-
Notifications
You must be signed in to change notification settings - Fork 33
/
aml-private.azcli
770 lines (717 loc) · 41.6 KB
/
aml-private.azcli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
#################################################
# Commands to create a secured AML environment
# in VNets using private endpoints.
#
# Jose Moreno, August 2022
#################################################
# Variables
rg=aml
location=eastus2
vnet_name=amlvnet
vnet_prefix=10.13.76.0/22
vm_subnet_name=compute
vm_subnet_prefix=10.13.76.0/24
azfw_subnet_name=AzureFirewallSubnet
azfw_subnet_prefix=10.13.77.64/26
ep_subnet_name=ep
ep_subnet_prefix=10.13.77.0/27
test_subnet_name=test
test_subnet_prefix=10.13.77.32/27
aks_subnet_name=aks
aks_subnet_prefix=10.13.77.128/25
storage_blob_ep_name=blobep
storage_file_ep_name=fileep
acr_ep_name=acrep
akv_ep_name=akvep
aml_ep_name=wsep
azfw_name=amlfw
test_vm_size=Standard_B1s
# Function to update UDR back to testing PC
function update_myip() {
myip=$(curl -s4 ifconfig.co)
echo "Updating IP to $myip..."
az network route-table route update --route-table-name aml -g $rg --address-prefix "${myip}/32" --name clientIP -o none
}
# Function to update the SSH key of the Linux VM
function update_ssh_key() {
vm_name=testvm
user=$(whoami)
echo "Updating SSH key for VM $vm_name and user $user..."
az vm user update -g $rg -u $user -n $vm_name --ssh-key-value "$(< ~/.ssh/id_rsa.pub)" -o none
}
# RG and VNet
echo "Creating RG and VNets..."
az group create -n $rg -l $location -o none
az network vnet create -g $rg -n $vnet_name --address-prefix $vnet_prefix --subnet-name $vm_subnet_name --subnet-prefix $vm_subnet_prefix -l $location -o none
az network vnet subnet create -g $rg --vnet-name $vnet_name -n $ep_subnet_name --address-prefix $ep_subnet_prefix -o none
az network vnet subnet create -g $rg --vnet-name $vnet_name -n $ep_subnet_name --address-prefix $ep_subnet_prefix -o none
az network vnet subnet create -g $rg --vnet-name $vnet_name -n $azfw_subnet_name --address-prefix $azfw_subnet_prefix -o none
az network vnet subnet create -g $rg --vnet-name $vnet_name -n $test_subnet_name --address-prefix $test_subnet_prefix -o none
az network vnet subnet create -g $rg --vnet-name $vnet_name -n $aks_subnet_name --address-prefix $aks_subnet_prefix -o none
# az network vnet subnet update -n $compute_subnet_name -g $rg --vnet-name $vnet_name --disable-private-endpoint-network-policies true
# Log Analytics Workspace
logws_name=$(az monitor log-analytics workspace list -g $rg --query '[0].name' -o tsv)
if [[ -z "$logws_name" ]]
then
echo "Creating new Log Analytics workspace"
logws_name=log$RANDOM
az monitor log-analytics workspace create -n $logws_name -g $rg -o none
else
echo "Log Analytics workspace $logws_name found"
fi
logws_id=$(az resource list -g $rg -n $logws_name --query '[].id' -o tsv)
logws_customerid=$(az monitor log-analytics workspace show -n $logws_name -g $rg --query customerId -o tsv)
# Storage account
storage_account_name=$(az storage account list -g $rg --query '[0].name' -o tsv)
if [[ -z "$storage_account_name" ]]; then
storage_account_name=aml$RANDOM
echo "Creating new storage account $storage_account_name..."
az storage account create -n $storage_account_name -g $rg --sku Standard_LRS --kind StorageV2 -o none
else
echo "Storage Account $storage_account_name found in resource group"
fi
# Blob private link
echo "Create private endpoint for blob..."
storage_account_id=$(az storage account show -n $storage_account_name -g $rg -o tsv --query id)
az network private-endpoint create -n $storage_blob_ep_name -g $rg --vnet-name $vnet_name --subnet $ep_subnet_name --private-connection-resource-id $storage_account_id --group-id blob --connection-name blob -o none
dns_zone_name=privatelink.blob.core.windows.net
az network private-dns zone create -n $dns_zone_name -g $rg -o none
az network private-dns link vnet create -g $rg -z $dns_zone_name -n blobLink --virtual-network $vnet_name --registration-enabled false -o none
az network private-endpoint dns-zone-group create --endpoint-name $storage_blob_ep_name -g $rg -n blobzonegroup --zone-name zone1 --private-dns-zone $dns_zone_name -o none
# File private link
echo "Create private endpoint for file..."
az network private-endpoint create -n $storage_file_ep_name -g $rg --vnet-name $vnet_name --subnet $ep_subnet_name --private-connection-resource-id $storage_account_id --group-id file --connection-name file -o none
dns_zone_name=privatelink.file.core.windows.net
az network private-dns zone create -n $dns_zone_name -g $rg -o none
az network private-dns link vnet create -g $rg -z $dns_zone_name -n fileLink --virtual-network $vnet_name --registration-enabled false -o none
az network private-endpoint dns-zone-group create --endpoint-name $storage_file_ep_name -g $rg -n filezonegroup --zone-name zone1 --private-dns-zone $dns_zone_name -o none
# Diagnostic settings
storage_account_id=$(az storage account show -n $storage_account_name -g $rg -o tsv --query id)
storage_blob_id="${storage_account_id}/blobServices/default"
storage_file_id="${storage_account_id}/fileServices/default"
az monitor diagnostic-settings create -n blobdiag --storage-account $storage_account_name --resource $storage_blob_id --workspace $logws_id \
--metrics '[{"category": "Transaction", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false }, "timeGrain": null}]' \
--logs '[{"category": "StorageRead", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}},
{"category": "StorageWrite", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}},
{"category": "StorageDelete", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}}]' -o none
az monitor diagnostic-settings create -n filediag --storage-account $storage_account_name --resource $storage_file_id --workspace $logws_id \
--metrics '[{"category": "Transaction", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false }, "timeGrain": null}]' \
--logs '[{"category": "StorageRead", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}},
{"category": "StorageWrite", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}},
{"category": "StorageDelete", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}}]' -o none
# Disable public access
echo "Disabling public network access in storage account $storage_account_name..."
az storage account update -n $storage_account_name -g $rg --public-network-access Disabled -o none
# Azure Key Vault
akv_name=$(az keyvault list -g $rg --query '[0].name' -o tsv)
if [[ -z "$akv_name" ]]; then
akv_name=aml$RANDOM
echo "Creating new Azure Key Vault $akv_name..."
az keyvault create -n $akv_name -g $rg -l $location --public-network-access disabled -o none
else
echo "Azure Key Vault $akv_name found in resource group"
fi
echo "Creating AKV private link..."
akv_id=$(az keyvault show -n $akv_name -g $rg --query id -o tsv)
az network private-endpoint create -n $akv_ep_name -g $rg --vnet-name $vnet_name --subnet $ep_subnet_name --private-connection-resource-id $akv_id --group-id vault --connection-name vault -o none
dns_zone_name=privatelink.file.vaultcore.azure.net
az network private-dns zone create -n $dns_zone_name -g $rg -o none
az network private-dns link vnet create -g $rg -z $dns_zone_name -n akvLink --virtual-network $vnet_name --registration-enabled false -o none
az network private-endpoint dns-zone-group create --endpoint-name $akv_ep_name -g $rg -n akvzonegroup --zone-name zone1 --private-dns-zone $dns_zone_name -o none
# Logs
az monitor diagnostic-settings create -n akvdiag --resource $akv_id --workspace $logws_id \
--metrics '[{"category": "AllMetrics", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false }, "timeGrain": null}]' \
--logs '[{"category": "AuditEvent", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}}]' -o none
# Disable network access (if not done at creation time)
# az keyvault update -n $akv_name -g $rg --public-network-access disabled -o none
# Azure Container Registry
acr_name=$(az acr list -g $rg --query '[0].name' -o tsv)
if [[ -z "$acr_name" ]]; then
acr_name=aml$RANDOM
echo "Creating new Azure Container Registry $acr_name..."
az acr create -n $acr_name -g $rg -l $location --sku Premium --public-network-enabled false -o none
else
echo "Azure Container Registry $acr_name found in resource group"
fi
echo "Creating ACR private link..."
acr_id=$(az acr show -n $acr_name -g $rg --query id -o tsv)
az network private-endpoint create -n $acr_ep_name -g $rg --vnet-name $vnet_name --subnet $ep_subnet_name --private-connection-resource-id $acr_id --group-id registry --connection-name acr -o none
dns_zone_name="privatelink.azurecr.io"
az network private-dns zone create -n $dns_zone_name -g $rg -o none
az network private-dns link vnet create -g $rg -z $dns_zone_name -n acrLink --virtual-network $vnet_name --registration-enabled false -o none
az network private-endpoint dns-zone-group create --endpoint-name $acr_ep_name -g $rg -n acrzonegroup --zone-name zone1 --private-dns-zone $dns_zone_name -o none
# Logs
az monitor diagnostic-settings create -n acrdiag --resource $acr_id --workspace $logws_id \
--metrics '[{"category": "AllMetrics", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false }, "timeGrain": null}]' \
--logs '[{"category": "ContainerRegistryRepositoryEvents", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}},
{"category": "ContainerRegistryLoginEvents", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}}]' -o none
# Enable admin user
az acr update --admin-enabled -n $acr_name -g $rg -o none
acr_usr=$(az acr credential show -n "$acr_name" -g "$rg" --query 'username' -o tsv)
acr_pwd=$(az acr credential show -n "$acr_name" -g "$rg" --query 'passwords[0].value' -o tsv)
# AML workspace
aml_ws_name=$(az ml workspace list -g $rg --query '[0].name' -o tsv)
aml_ws_file=/tmp/amlws.yaml
if [[ -z "$aml_ws_name" ]]; then
aml_ws_name=aml$RANDOM
cat <<EOF > ${aml_ws_file}
\$schema: https://azuremlschemas.azureedge.net/latest/workspace.schema.json
name: $aml_ws_name
location: $location
display_name: AML workspace with existing resources
description: This configuration specifies a workspace configuration with existing dependent resources
storage_account: $storage_account_id
container_registry: $acr_id
key_vault: $akv_id
tags:
purpose: demonstration
EOF
echo "Creating new Azure ML workspace $aml_ws_name..."
# az ml workspace create -n $aml_ws_name -g $rg -l $location --public-network-access Disabled --image-build-compute cpucompute \
# --container-registry $acr_id -o none
az ml workspace create -g $rg -f $aml_ws_file -o none
else
echo "Azure ML workspace $aml_ws_name found in resource group"
fi
echo "Creating AML private link..."
aml_ws_id=$(az ml workspace list -g $rg --query '[0].id' -o tsv)
az network private-endpoint create -n $aml_ep_name -g $rg --vnet-name $vnet_name --subnet $ep_subnet_name --private-connection-resource-id $aml_ws_id --group-id amlworkspace --connection-name amlworkspace -o none
dns_zone_name=privatelink.api.azureml.ms
az network private-dns zone create -n $dns_zone_name -g $rg -o none
az network private-dns link vnet create -g $rg -z $dns_zone_name -n amlLink --virtual-network $vnet_name --registration-enabled false -o none
az network private-endpoint dns-zone-group create --endpoint-name $aml_ep_name -g $rg -n amlzonegroup --zone-name zone1 --private-dns-zone $dns_zone_name -o none
echo "Disabling public access to the workspace..."
az ml workspace update -n $aml_ws_name -g $rg --public-network-access Disabled -o none
# Enabling AML Studio (??)
storage_blob_ep_id=$(az network private-endpoint show -n $storage_blob_ep_name -g $rg --query id -o tsv)
storage_file_ep_id=$(az network private-endpoint show -n $storage_file_ep_name -g $rg --query id -o tsv)
aml_ws_appid=$(az ad sp list --display-name $aml_ws_name --query '[0].appId' -o tsv)
echo "Creating Reader assignment for AML workspace's MSI $aml_ws_appid to the blob endpoint $storage_blob_ep_name..."
az role assignment create --assignee $aml_ws_appid --role "Reader" --scope $storage_blob_ep_id -o none
echo "Creating Reader assignment for AML workspace's MSI $aml_ws_appid to the file endpoint $storage_file_ep_name..."
az role assignment create --assignee $aml_ws_appid --role "Reader" --scope $storage_file_ep_id -o none
# Grant access to ACR
echo "Granting pull access on ACR $acr_name to AML workspace $aml_ws_name..."
az role assignment create --assignee $aml_ws_appid --scope $acr_id --role acrpush -o none
echo "Enabling access to trusted services on ACR $acr_name..."
az acr update -n $acr_name --allow-trusted-services true -o none
# Grant access to AKV
# az keyvault set-policy -n $akv_name --object-id $aml_ws_appid -o none \
# --secret-permissions all --key-permissions all --certificate-permissions all
# Azure Firewall
azfw_policy_name="${azfw_name}-policy"
echo "Creating Azure Firewall Policy..."
az network firewall policy create -n $azfw_policy_name -g $rg -o none
echo "Creating application rule to allow all FQDNs..."
az network firewall policy rule-collection-group create -n amlruleset --policy-name $azfw_policy_name -g $rg --priority 1000 -o none
az network firewall policy rule-collection-group collection add-filter-collection --policy-name $azfw_policy_name --rule-collection-group-name amlruleset -g $rg \
--name allowall --collection-priority 200 --action Allow --rule-name allowall --rule-type ApplicationRule --description "AllowAll" \
--target-fqdns '*' --source-addresses '*' --protocols Http=80 Https=443 -o none
az network firewall policy rule-collection-group collection add-filter-collection --policy-name $azfw_policy_name --rule-collection-group-name amlruleset -g $rg \
--name ntp --collection-priority 110 --action Allow --rule-name allowNTP --rule-type NetworkRule --description "Egress NTP traffic" \
--destination-addresses '*' --source-addresses "$vnet_prefix" --ip-protocols UDP --destination-ports "123" -o none
az network firewall policy rule-collection-group collection add-filter-collection --policy-name $azfw_policy_name --rule-collection-group-name amlruleset -g $rg \
--name winactivation --collection-priority 115 --action Allow --rule-name allowWinActivation --rule-type NetworkRule --description "Egress Windows Activation" \
--destination-addresses '20.118.99.224' '40.83.235.53' '23.102.135.246' --source-addresses "$vnet_prefix" --ip-protocols Tcp --destination-ports "1688" -o none
# az network firewall policy rule-collection-group collection add-filter-collection --policy-name $azfw_policy_name --rule-collection-group-name amlruleset -g $rg \
# --name allowallnet --collection-priority 150 --action Allow --rule-name AllowAll --rule-type NetworkRule --description "Allow All" \
# --destination-addresses '*' --source-addresses '*' --ip-protocols All --destination-ports '*' -o none
echo "Creating Azure Firewall..."
az network firewall create -n $azfw_name -g $rg --policy $azfw_policy_name -l $location -o none
echo "Configuring firewall logs and private IP..."
azfw_id=$(az network firewall show -n $azfw_name -g $rg -o tsv --query id)
az monitor diagnostic-settings create -n mydiag --resource $azfw_id --workspace $logws_id \
--metrics '[{"category": "AllMetrics", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false }, "timeGrain": null}]' \
--logs '[{"category": "AzureFirewallApplicationRule", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}},
{"category": "AzureFirewallNetworkRule", "enabled": true, "retentionPolicy": {"days": 0, "enabled": false}}]' -o none
echo "Configuring Azure Firewall's IP..."
azfw_pip_name="${azfw_name}-pip"
az network public-ip create -g $rg -n $azfw_pip_name --sku standard --allocation-method static -l $location -o none
az network firewall ip-config create -f $azfw_name -n azfw-ipconfig -g $rg --public-ip-address $azfw_pip_name --vnet-name $vnet_name -o none
az network firewall update -n $azfw_name -g $rg -o none
azfw_private_ip=$(az network firewall show -n $azfw_name -g $rg -o tsv --query 'ipConfigurations[0].privateIpAddress') && echo "$azfw_private_ip"
# UDRs to send all traffic through the Azure Firewall
# See https://docs.microsoft.com/en-us/azure/machine-learning/how-to-secure-training-vnet
echo "Creating route table..."
az network route-table create -n aml -g $rg -l $location -o none
my_ip=$(curl -s4 ifconfig.co)
az network route-table route create -n clientIP --route-table-name aml -g $rg --next-hop-type Internet --address-prefix "$my_ip/32" -o none
az network route-table route create -n defaultRoute --route-table-name aml -g $rg --next-hop-type VirtualAppliance --address-prefix "0.0.0.0/0" --next-hop-ip-address $azfw_private_ip -o none
# az network route-table route create -n vnetTraffic --route-table-name aml -g $rg --next-hop-type VirtualAppliance --address-prefix $vnet_prefix --next-hop-ip-address $azfw_private_ip -o none
# az network route-table route delete -n vnetTraffic --route-table-name aml -g $rg -o none
az network route-table route create -n azureBatch --route-table-name aml -g $rg --next-hop-type VirtualAppliance --address-prefix BatchNodeManagement --next-hop-ip-address $azfw_private_ip -o none
az network route-table route create -n AML --route-table-name aml -g $rg --next-hop-type VirtualAppliance --address-prefix AzureMachineLearning --next-hop-ip-address $azfw_private_ip -o none
rt_id=$(az network route-table show -n aml -g $rg --query id -o tsv)
az network vnet subnet update -g $rg --vnet-name $vnet_name -n $vm_subnet_name --route-table $rt_id -o none
az network vnet subnet update -g $rg --vnet-name $vnet_name -n $test_subnet_name --route-table $rt_id -o none
# Test VM (linux)
az vm create -n testvm -g $rg --image ubuntuLTS --generate-ssh-keys --public-ip-address testvm-pip --size $test_vm_size \
--vnet-name $vnet_name --subnet $test_subnet_name --public-ip-sku Standard -o none
testvm_pip=$(az network public-ip show -n testvm-pip -g $rg --query ipAddress -o tsv)
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "sudo apt update"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az extension add -n ml"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az login --use-device-code" # !!!!! Interactive, don't run as a script !!!!!
subscription_id=$(az account show --query id -o tsv)
echo "Setting subscription to $subscription_id..."
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az account set -n $subscription_id"
# Test VM (Windows
win_user=$(whoami)
win_password='Microsoft123!'
win_vm_name=testvmwin
win_vm_sku=Standard_B2ms
win_pip_name=testvmwin-pip
az vm create -n $win_vm_name -g $rg --image win2019datacenter --admin-username $win_user --admin-password $win_password --size $win_vm_sku \
--vnet-name $vnet_name --subnet $vm_subnet_name --public-ip-address $win_pip_name -o none
# Create compute cluster
compute_type=AmlCompute # Can be 'ComputeInstance' or 'AmlCompute'
compute_name=$(az ml compute list -w $aml_ws_name -g $rg --query '[0].name' -o tsv)
if [[ -z "$compute_name" ]]; then
compute_name=cpucompute$RANDOM
# compute_vm_size=STANDARD_DS3_v2 # $0.23/h
compute_vm_size=STANDARD_DS11_v2 # $0.15/h
echo "Disabling private link policies in subnet $subnet_name..."
az network vnet subnet update -n $vm_subnet_name --vnet-name $vnet_name -g $rg --disable-private-link-service-network-policies -o none # Required for clusters without PIP
az network vnet subnet update -n $vm_subnet_name --vnet-name $vnet_name -g $rg --disable-private-endpoint-network-policies -o none # Required for clusters without PIP
echo "Creating new compute target $compute_name of type $compute_type..."
# az ml compute delete -w $aml_ws_name -g $rg -n $compute_name -y # If you need to delete it
# ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml compute create -w $aml_ws_name -g $rg -n $compute_name -t AmlCompute --size $compute_vm_size --vnet-name $vnet_name --subnet $vm_subnet_name --min-instances 0 --max-instances 1 -o none"
# ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml compute create -w $aml_ws_name -g $rg -n $compute_name -t ComputeInstance --size $compute_vm_size --vnet-name $vnet_name --subnet $vm_subnet_name -o none"
if [[ "$compute_type" == "ComputeInstance" ]]; then
az ml compute create -w $aml_ws_name -g $rg -n $compute_name -t ComputeInstance --size $compute_vm_size --vnet-name $vnet_name --subnet $vm_subnet_name -o none
elif [[ "$compute_type" == "AmlCompute" ]]; then
az ml compute create -w $aml_ws_name -g $rg -n $compute_name -t AmlCompute --size $compute_vm_size --vnet-name $vnet_name --subnet $vm_subnet_name --min-instances 0 --max-instances 1 -o none
else
echo "Compute type $compute_type not recognized"
fi
echo "Updating cluster to use compute instance $compute_name to build images..."
az ml workspace update -n $aml_ws_name -g $rg --image-build-compute $compute_name -o none
else
echo "Compute target $compute_name found in AML workspace $aml_ws_name"
fi
# Dataset
function load_dataset() {
dataset_name=$1
dataset_local_file="/tmp/${dataset_name}.csv"
wget "https://azuremlexamples.blob.core.windows.net/datasets/${dataset_name}.csv" -O $dataset_local_file
dataset_yaml=/tmp/dataset.yml
cat <<EOF > ${dataset_yaml}
\$schema: https://azuremlschemas.azureedge.net/latest/asset.schema.json
name: ${dataset_name}
version: 1
path: $dataset_local_file
type: uri_file
description: ${dataset_name} dataset.
EOF
scp "${dataset_local_file}" "${testvm_pip}:${dataset_local_file}"
scp "${dataset_yaml}" "${testvm_pip}:${dataset_yaml}"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml data create -w $aml_ws_name -g $rg -f $dataset_yaml -o none"
}
load_dataset iris
load_dataset diabetes
# Environment
conda_env_url='https://raw.githubusercontent.com/MicrosoftLearning/mslearn-aml-cli/master/Allfiles/Labs/01/conda-envs/basic-env-cpu.yml'
env_yaml=/tmp/environment.yml
conda_yaml=/tmp/basic-env-cpu.yml
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "wget $conda_env_url -O $conda_yaml"
cat <<EOF > ${env_yaml}
\$schema: https://azuremlschemas.azureedge.net/latest/environment.schema.json
name: basic-env-scikit2
image: mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04
conda_file: $conda_yaml
description: Environment created from a Docker image plus Conda environment.
EOF
scp "${env_yaml}" "${testvm_pip}:${env_yaml}"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml environment create -w $aml_ws_name -g $rg -f $env_yaml -o none"
# Hello world job
job_file=/tmp/job_hello.yml
cat <<EOF > ${job_file}
\$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: echo "hello world"
display_name: hello-world-$compute_name
experiment_name: hello-world-$compute_name
environment:
image: library/python:latest
compute: azureml:$compute_name
display_name: hello-world-$compute_name
EOF
run_output=$(az ml job create -w $aml_ws_name -g $rg -f $job_file)
run_id=$(echo $run_output | jq -r '.name') && echo "Running job $run_id..."
# Training
# Potentially look at https://github.com/MicrosoftLearning/mslearn-aml-cli/tree/master/Allfiles/Labs/02/basic-job
# Training with AML dataset...
job_file=/tmp/job_diabetes.yml
cat <<EOF > ${job_file}
\$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: src
command: >-
python main.py
--diabetes-csv \${{inputs.diabetes}}
inputs:
diabetes:
path: azureml:diabetes:1
mode: ro_mount
environment: azureml:basic-env-scikit@latest
compute: azureml:$compute_name
experiment_name: diabetes-data-example
description: Train a classification model on diabetes data using a registered dataset as input.
display_name: diabetes-$compute_name
EOF
training_script_local_file="/tmp/main.py"
training_script_url="https://raw.githubusercontent.com/MicrosoftLearning/mslearn-aml-cli/master/Allfiles/Labs/02/input-data-job/src/main.py"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "mkdir src"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "wget $training_script_url -O ./src/main.py"
scp "${job_file}" "${testvm_pip}:${job_file}"
job_file_basename=$(basename "$job_file")
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "cp $job_file ./$job_file_basename"
run_output=$(ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml job create -w $aml_ws_name -g $rg -f $job_file_basename")
run_id=$(echo $run_output | jq -r '.name') && echo "Running job $run_id..."
# Training with local data file
training_script=/tmp/diabetes_experiment.py
training_script_basename=$(basename "$training_script")
cat <<EOF > ${training_script}
# Import libraries
from azureml.core import Run
import pandas as pd
import numpy as np
import joblib
import os
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
# Get the experiment run context
run = Run.get_context()
# load the diabetes dataset
print("Loading Data...")
diabetes = pd.read_csv('diabetes.csv')
# Separate features and labels
X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values
# Split data into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0)
# Set regularization hyperparameter
reg = 0.01
# Train a logistic regression model
print('Training a logistic regression model with regularization rate of', reg)
run.log('Regularization Rate', np.float(reg))
model = LogisticRegression(C=1/reg, solver="liblinear").fit(X_train, y_train)
# calculate accuracy
y_hat = model.predict(X_test)
acc = np.average(y_hat == y_test)
print('Accuracy:', acc)
run.log('Accuracy', np.float(acc))
# calculate AUC
y_scores = model.predict_proba(X_test)
auc = roc_auc_score(y_test,y_scores[:,1])
print('AUC: ' + str(auc))
run.log('AUC', np.float(auc))
# Save the trained model in the outputs folder
os.makedirs('outputs', exist_ok=True)
joblib.dump(value=model, filename='outputs/diabetes_model.pkl')
run.complete()
EOF
# Job file:
job_file=/tmp/job_diabetes.yml
cat <<EOF > ${job_file}
\$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
code: src
command: >-
python ${training_script_basename}
environment: azureml:basic-env-scikit@latest
compute: azureml:$compute_name
experiment_name: diabetes-data-example
description: Train a classification model on diabetes data using a data file uploaded along the script.
display_name: diabetes-localfile-$compute_name
EOF
# Create src folder in local VM, in case it doesnt exist
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "mkdir src"
# Option 1: get training script from the Web
# training_script_url="https://raw.githubusercontent.com/MicrosoftLearning/mslearn-aml-cli/master/Allfiles/Labs/02/basic-job/src/main.py"
# ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "wget $training_script_url -O ./src/main.py"
# Option 2: copy from local file system
scp "${training_script}" "${testvm_pip}:/home/$(whoami)/src/${training_script_basename}"
# Get data from the web
diabetes_data_url='https://github.com/MicrosoftLearning/mslearn-dp100/raw/main/data/diabetes.csv'
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "wget $diabetes_data_url -O ./src/diabetes.csv"
# Copy job file from local file system
job_file_basename=$(basename "$job_file")
scp "${job_file}" "${testvm_pip}:/home/$(whoami)/${job_file_basename}"
# Run job
run_output=$(ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml job create -w $aml_ws_name -g $rg -f $job_file_basename")
run_id=$(echo $run_output | jq -r '.name') && echo "Running job $run_id..."
# Register model
model_name=diabetesmodel
# az ml model create -n $model_name -w $aml_ws_name -g $rg --version 1 --path "azureml://jobs/${run_id}/outputs/artifacts/paths/model/"
az ml model create -n $model_name -w $aml_ws_name -g $rg --version 1 --path "azureml://jobs/${run_id}/outputs/diabetes_model.pkl"
# Deploy to a managed endpoint
# 1. Endpoint
endpoint_name=diabetes$RANDOM
endpoint_file=/tmp/endpoint_diabetes.yml
cat <<EOF > ${endpoint_file}
\$schema: https://azuremlschemas.azureedge.net/exp/managedOnlineEndpoint.schema.json
name: diabetes-endpoint
auth_mode: key
public_network_access: disabled # This is ingress
# egress_public_network_access: disabled # Note that egress access is a deployment property, not an endpoint property
EOF
scp "${endpoint_file}" "${testvm_pip}:${endpoint_file}"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml online-endpoint create -n $endpoint_name -w $aml_ws_name -g $rg -f $endpoint_file -o none"
# 2. Deployment
scoring_script_url=https://raw.githubusercontent.com/MicrosoftDocs/pipelines-azureml/master/models/diabetes/score.py
deployment_file=/tmp/deployment_diabetes.yml
cat <<EOF > ${deployment_file}
\$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
name: diabetes-deployment
endpoint_name: ${endpoint_name}
model: azureml:${model_name}:1
instance_type: Standard_F2s_v2
instance_count: 1
environment: azureml:basic-env-scikit:1
egress_public_network_access: disabled
code_configuration:
code: /home/$(whoami)/score/
scoring_script: score.py
EOF
scoring_script=/tmp/score.py
cat <<EOF > ${scoring_script}
import json
import numpy as np
import pickle
from sklearn.linear_model import Ridge
from azureml.core.model import Model
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
def init():
global model
model_path = Model.get_model_path('$model_name')
with open(model_path, 'rb') as file:
model = pickle.load(file)
input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
output_sample = np.array([3726.995])
@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
try:
result = model.predict(data)
return result.tolist()
except Exception as e:
error = str(e)
return error
EOF
scp "${deployment_file}" "${testvm_pip}:${deployment_file}"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "mkdir score"
# Option 1: download score.py from Internet
# ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "wget $scoring_script_url -O ./score/score.py"
# ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "sudo sed -i \"s/diabetes-model/$model_name/\" ./score/score.py" # Fix the scoring script (that version is hardwired to a specific model name)
# Option 2: copy from local file
scp "${scoring_script}" "${testvm_pip}:/home/$(whoami)/score/score.py"
# Create deployment
deployment_name=diabetes$RANDOM
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml online-deployment create -n $deployment_name -w $aml_ws_name -g $rg -f $deployment_file --all-traffic -o none"
# This error happens when using public outbound for the endpoint and the WS is private:
# Your online endpoint deployment failed because your workspace enables a private link feature and it blocks
# your online managed endpoint to get data from your workspace. Please enable workspace public network access to avoid this issue
# Unidentified error:
# Creating/updating online deployment diabetes23941 ERROR: (None) ResourceNotReady: User container has crashed or terminated.
# Please see troubleshooting guide, available here: https://aka.ms/oe-tsg#error-resourcenotready
# Create inference cluster
# https://docs.microsoft.com/en-us/azure/machine-learning/how-to-attach-kubernetes-anywhere?tabs=deploy-extension-with-cli%2Ccli
# 1. Create AKS cluster
aks_subnet_id=$(az network vnet subnet show -n $aks_subnet_name --vnet-name $vnet_name -g $rg --query id -o tsv)
rt_id=$(az network route-table show -n aml -g $rg --query id -o tsv)
az network vnet subnet update --ids $aks_subnet_id --route-table $rt_id -o none # kubenet/BYO-RT not supported with MSI
aks_node_size=Standard_B2ms # Some possible values: Standard_B2ms, Standard_D2_v3
network_plugin=azure # Since BYO-RT not supported with MSI, but AML requires MSI at this point, using Azure CNI
k8s_versions=$(az aks get-versions -l $location -o json)
k8s_version=$(echo $k8s_versions | jq '.orchestrators[]' | jq -rsc 'sort_by(.orchestratorVersion) | reverse[0] | .orchestratorVersion')
echo "Latest supported k8s version in $rg_location is $k8s_version (in preview)"
aks_service_cidr=10.0.0.0/16
aks_name=$(az aks list -g $rg --query '[0].name' -o tsv)
if [[ -z "$aks_name" ]]; then
echo "Creating AKS cluster..."
aks_name=amlaks$RANDOM
az aks create -g $rg -n $aks_name -l $location -o none \
-c 1 -s $aks_node_size -k $k8s_version --generate-ssh-keys -u $(whoami) \
--enable-managed-identity \
--network-plugin $network_plugin --vnet-subnet-id $aks_subnet_id --service-cidr $aks_service_cidr \
--network-policy 'calico' --load-balancer-sku Standard --outbound-type userDefinedRouting \
--node-resource-group "$aks_name"-iaas-"$RANDOM" \
--enable-private-cluster --disable-public-fqdn
else
echo "AKS cluster $aks_name found in resource group"
fi
az aks enable-addons --addons azure-policy -n $aks_name -g $rg -o none
# 2. Deploy AzureML extension
az k8s-extension create --name amlextension --extension-type Microsoft.AzureML.Kubernetes -o none \
--config enableTraining=True enableInference=True inferenceRouterServiceType=LoadBalancer internalLoadBalancerProvider=azure allowInsecureConnections=True inferenceLoadBalancerHA=False \
--cluster-type managedClusters --cluster-name $aks_name --resource-group $rg --scope cluster
# 3. Attach cluster to AML workspace
aks_id=$(az aks show -n $aks_name -g $rg --query id -o tsv) && echo "AKS cluster ID is $aks_id"
aks_ns=aml
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml compute attach -w $aml_ws_name -g $rg --type Kubernetes -n $aks_name --resource-id $aks_id --identity-type SystemAssigned --namespace $aks_ns -o none"
# Deploy model to AKS inferencing cluster
endpoint_name=aksendpoint
endpoint_file=/tmp/aksendpoint_diabetes.yml
scoring_script_url=https://raw.githubusercontent.com/MicrosoftDocs/pipelines-azureml/master/models/diabetes/score.py
cat <<EOF > ${endpoint_file}
name: blue
app_insights_enabled: false
endpoint_name: $endpoint_name
model:
path: /home/$(whoami)/${model_name}/model/model.pkl
code_configuration:
code: /home/$(whoami)/score/
scoring_script: score.py
environment:
conda_file: file:/home/$(whoami)/${model_name}/model/conda.yml
image: mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1
EOF
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az ml model download -n $model_name -w $aml_ws_name -g $rg -v 1 -p ./" # This will create the folder $model_name in ~/
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "mkdir score"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "wget $scoring_script_url -O ./score/score.py"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "sudo sed -i \"s/diabetes-model/$model_name/\" ./score/score.py"
scp "${endpoint_file}" "${testvm_pip}:${endpoint_file}"
#################
# Diagnostics #
#################
# Jump host
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "ip a"
# Routing
az network route-table route list --route-table aml -g $rg -o table
testvm_nic_id=$(az vm show -n testvm -g $rg --query 'networkProfile.networkInterfaces[0].id' -o tsv)
az network nic show-effective-route-table --ids $testvm_nic_id
# Test DNS resolution
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "nslookup ${storage_account_name}.blob.core.windows.net"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "nslookup ${storage_account_name}.file.core.windows.net"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "nslookup ${acr_name}.azurecr.io"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "nslookup ${akv_name}.file.vaultcore.azure.net"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "nslookup ${ml_ws_name}.api.azureml.ms"
# AML
az ml compute list -w $aml_ws_name -g $rg -o table
az ml job list -w $aml_ws_name -g $rg -o table
az ml data list -w $aml_ws_name -g $rg -o table
az ml environment list -w $aml_ws_name -g $rg -o table
az ml model list -w $aml_ws_name -g $rg -o table
az ml online-endpoint list -w $aml_ws_name -g $rg -o table
az ml online-deployment list -w $aml_ws_name -g $rg -e $endpoint_name -o table
az ml online-deployment get-logs -n diabetes23941 -w $aml_ws_name -g $rg -e $endpoint_name -o table
# ACR
# az acr repository list -n $acr_name -g $rg -u $acr_usr -p $acr_pwd -o table
# ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az acr repository list -n $acr_name -u $acr_usr -p $acr_pwd -o table"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az acr repository list -n $acr_name -o table"
acr_repo_name=$(ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az acr repository list -n $acr_name -o tsv --query '[0]'")
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az acr repository show-tags --repository $acr_repo_name -n $acr_name -o table"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az acr repository show --repository $acr_repo_name -n $acr_name"
# Storage
az storage container list --account-name $storage_account_name --auth-mode login -o table
# AKS
az aks list -g $rg -o table
az k8s-extension show --name amlextension --cluster-type managedClusters --cluster-name $aks_name --resource-group $rg
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "sudo az aks install-cli"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "az aks get-credentials -n $aks_name -g $rg --overwrite --admin"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "kubectl get ns"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "kubectl get svc -A"
ssh -n -o BatchMode=yes -o StrictHostKeyChecking=no $testvm_pip "kubectl get svc -n azureml"
# Logs
logs_query='AzureDiagnostics
| distinct ResourceType'
logs_query='AzureDiagnostics
| distinct Category'
az monitor log-analytics query -w $logws_customerid --analytics-query $logs_query -o tsv
# AKV logs
akv_logs_query='AzureDiagnostics
| where ResourceType == "VAULTS" and Category == "AuditEvent"
| where TimeGenerated >= ago(2h)
| project TimeGenerated, ResultType, OperationName, CallerIPAddress, msg_s, Message
| take 20'
az monitor log-analytics query -w $logws_customerid --analytics-query $akv_logs_query -o tsv
# Firewall net rule logs
fw_net_logs_query='AzureDiagnostics
| where Category == "AzureFirewallNetworkRule"
| where TimeGenerated >= ago(12h)
| parse msg_s with * "Action: " Action "." *
| where Action == "Deny"
| project TimeGenerated, msg_s, Action
| take 20 '
az monitor log-analytics query -w $logws_customerid --analytics-query $fw_net_logs_query -o tsv
# Firewall App Rule Logs
fw_app_logs_query='AzureDiagnostics
| where ResourceType == "AZUREFIREWALLS"
| where Category == "AzureFirewallApplicationRule"
| where TimeGenerated >= ago(1h)
| project TimeGenerated, msg_s
| take 20'
az monitor log-analytics query -w $logws_customerid --analytics-query $fw_app_logs_query -o tsv
####################
# Start/Stop #
####################
# Stop all
function stop_lab() {
echo "Stopping AKS..."
aks_name=$(az aks list -g $rg --query '[0].name' -o tsv)
az aks stop -n $aks_name -g $rg --no-wait -o none
echo "Stopping VMs..."
stop_vms
echo "Stopping AML compute..."
stop_aml_compute
echo "Stopping Azure Firewall..."
stop_firewall
}
# Stop VMs
function stop_vms() {
vm_list=$(az vm list -o tsv -g "$rg" --query "[].name")
while IFS= read -r vm_name; do
az vm deallocate -g $rg -n "$vm_name" --no-wait -o none
done <<< "$vm_list"
}
# Stop AML compute
function stop_aml_compute() {
compute_list=$(az ml compute list -o tsv -w $aml_ws_name -g "$rg" --query "[].name")
while IFS= read -r compute_name; do
az ml compute stop -g $rg -w $aml_ws_name -n "$compute_name" --no-wait -o none
done <<< "$compute_list"
}
# Start
function start_lab() {
aks_name=$(az aks list -g $rg --query '[0].name' -o tsv)
az aks start -n $aks_name -g $rg --no-wait -o none
start_vms
start_firewall
start_aml_compute
}
# Start VMs
function start_vms() {
vm_list=$(az vm list -o tsv -g "$rg" --query "[].name")
while IFS= read -r vm_name; do
az vm start -g $rg -n "$vm_name" --no-wait -o none
done <<< "$vm_list"
}
# Start AML compute
function start_aml_compute() {
compute_list=$(az ml compute list -o tsv -w $aml_ws_name -g "$rg" --query "[].name")
while IFS= read -r compute_name; do
az ml compute start -g $rg -w $aml_ws_name -n "$compute_name" -o none
done <<< "$compute_list"
}
# Functions to start/stop the firewall
function stop_firewall() {
azfw_name=$(az network firewall list -g $rg --query '[0].name' -o tsv)
azfw_ipconfig_name=$(az network firewall show -n $azfw_name -g $rg --query 'ipConfigurations[0].name' -o tsv)
az network firewall ip-config delete -f $azfw_name -n $azfw_ipconfig_name -g $rg -o none
az network firewall update -n $azfw_name -g $rg -o none
}
function start_firewall() {
azfw_name=$(az network firewall list -g $rg --query '[0].name' -o tsv)
azfw_ipconfig_name="${azfw_name}-ipconfig"
az network firewall ip-config create -f $azfw_name -n azfw-ipconfig -g $rg --public-ip-address $azfw_pip_name --vnet-name $vnet_name -o none
az network firewall update -n $azfw_name -g $rg -o none
}
# stop_lab
# start_lab
####################
# Cleanup !DANGER! #
####################
function cleanup_all() {
az group delete -n $rg -y
}
# cleanup_all