forked from ttrftech/NanoVNA
-
Notifications
You must be signed in to change notification settings - Fork 52
/
si4468.c
2732 lines (2399 loc) · 74.6 KB
/
si4468.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "hal.h"
#include "nanovna.h"
#include <math.h>
#include "si4432.h"
#include "spi.h"
#pragma GCC push_options
#pragma GCC optimize ("Os")
//#define __USE_FRR_FOR_RSSI__
// Define for use hardware SPI mode
#define USE_HARDWARE_SPI_MODE
// 10MHz clock
#define SI4432_10MHZ 10000000U
// !!!! FROM ili9341.c for disable it !!!!
//#define LCD_CS_HIGH palSetPad(GPIOB, GPIOB_LCD_CS)
// Not use delays for CS
#if 1
#define SI_CS_DELAY
#define PE_CS_DELAY
#define ADF_CS_DELAY
#else
#define SI_CS_DELAY {__asm("NOP");__asm("NOP");__asm("NOP");__asm("NOP");}
#define PE_CS_DELAY {__asm("NOP");__asm("NOP");__asm("NOP");__asm("NOP");}
#define ADF_CS_DELAY {__asm("NOP");__asm("NOP");__asm("NOP");__asm("NOP");}
#endif
#define SI_CS_LOW {palClearLine(LINE_RX_SEL);SI_CS_DELAY;}
#define SI_CS_HIGH {SI_CS_DELAY;palSetLine(LINE_RX_SEL);}
#define SI_SDN_LOW palClearLine(LINE_RX_SDN);
#define SI_SDN_HIGH palSetLine(LINE_RX_SDN);
// Hardware or software SPI use
#ifdef USE_HARDWARE_SPI_MODE
#define SI4432_SPI SPI1
// Check device SPI clock speed
#if STM32_PCLK2 > 48000000 // 48 or 72M MCU
// On 72M MCU STM32_PCLK2 = 72M, SPI = 72M/4 = 18M
//#define SI4432_SPI_SPEED SPI_BR_DIV4
#define SI4432_SPI_SPEED SPI_BR_DIV8
#else
// On 48M MCU STM32_PCLK2 = 48M, SPI = 48M/2 = 24M
//#define SI4432_SPI_SPEED SPI_BR_DIV2
#define SI4432_SPI_SPEED SPI_BR_DIV4
#endif
//#define ADF_SPI_SPEED SPI_BR_DIV64
//#define ADF_SPI_SPEED SPI_BR_DIV32
#define ADF_SPI_SPEED SPI_BR_DIV2
#define PE4302_HW_SHIFT true
#define PE_SPI_SPEED SPI_BR_DIV8
#define PE_SW_DELAY 2
static uint32_t old_spi_settings;
#else
static uint32_t new_port_moder;
#endif
static uint32_t old_port_moder;
#define SPI1_CLK_HIGH palSetPad(GPIOB, GPIOB_SPI_SCLK)
#define SPI1_CLK_LOW palClearPad(GPIOB, GPIOB_SPI_SCLK)
#define SPI1_SDI_HIGH palSetPad(GPIOB, GPIOB_SPI_MOSI)
#define SPI1_SDI_LOW palClearPad(GPIOB, GPIOB_SPI_MOSI)
#define SPI1_RESET palClearPort(GPIOB, (1<<GPIOB_SPI_SCLK)|(1<<GPIOB_SPI_MOSI))
#define SPI1_SDO ((palReadPort(GPIOB)>>GPIOB_SPI_MISO)&1)
#define SPI1_portSDO (palReadPort(GPIOB)&(1<<GPIOB_SPI_MISO))
#ifdef __PE4302__
#define CS_PE_HIGH {PE_CS_DELAY;palSetLine(LINE_PE_SEL);}
#define CS_PE_LOW {PE_CS_DELAY;palClearLine(LINE_PE_SEL);}
#endif
//#define MAXLOG 1024
//unsigned char SI4432_logging[MAXLOG];
//volatile int log_index = 0;
//#define SI4432_log(X) { if (log_index < MAXLOG) SI4432_logging[log_index++] = X; }
#define SI4432_log(X)
void start_SI4432_SPI_mode(void){
#ifdef USE_HARDWARE_SPI_MODE
old_spi_settings = SI4432_SPI->CR1;
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
#else
// Init legs mode for software bitbang
old_port_moder = GPIOB->MODER;
new_port_moder = old_port_moder & ~(PIN_MODE_ANALOG(GPIOB_SPI_SCLK)|PIN_MODE_ANALOG(GPIOB_SPI_MISO)|PIN_MODE_ANALOG(GPIOB_SPI_MOSI));
new_port_moder|= PIN_MODE_OUTPUT(GPIOB_SPI_SCLK)|PIN_MODE_INPUT(GPIOB_SPI_MISO)|PIN_MODE_OUTPUT(GPIOB_SPI_MOSI);
GPIOB->MODER = new_port_moder;
// Pull down SPI
SPI1_SDI_LOW;
SPI1_CLK_LOW;
#endif
}
void stop_SI4432_SPI_mode(void){
#ifdef USE_HARDWARE_SPI_MODE
SI4432_SPI->CR1 = old_spi_settings;
#else
// Restore hardware SPI
GPIOB->MODER = old_port_moder;
#endif
}
void start_PE4312_SPI_mode(void){
// Init legs mode for software bitbang
old_spi_settings = SI4432_SPI->CR1;
old_port_moder = GPIOB->MODER;
uint32_t new_port_moder = old_port_moder & ~(PIN_MODE_ANALOG(GPIOB_SPI_SCLK)|PIN_MODE_ANALOG(GPIOB_SPI_MISO)|PIN_MODE_ANALOG(GPIOB_SPI_MOSI));
new_port_moder|= PIN_MODE_OUTPUT(GPIOB_SPI_SCLK)|PIN_MODE_INPUT(GPIOB_SPI_MISO)|PIN_MODE_OUTPUT(GPIOB_SPI_MOSI);
GPIOB->MODER = new_port_moder;
// Pull down SPI
SPI1_SDI_LOW;
SPI1_CLK_LOW;
}
void stop_PE4312_SPI_mode(void){
// Restore hardware SPI
GPIOB->MODER = old_port_moder;
SI4432_SPI->CR1 = old_spi_settings;
}
#if 0
static void software_shiftOut(uint8_t val)
{
SI4432_log(SI4432_Sel);
SI4432_log(val);
uint8_t i = 0;
do {
if (val & 0x80)
SPI1_SDI_HIGH;
my_microsecond_delay(PE_SW_DELAY);
SPI1_CLK_HIGH;
my_microsecond_delay(PE_SW_DELAY);
SPI1_RESET;
val<<=1;
}while((++i) & 0x07);
}
#endif
static void shiftOut(uint8_t val)
{
#ifdef USE_HARDWARE_SPI_MODE
while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI));
SPI_WRITE_8BIT(SI4432_SPI, val);
while (SPI_IS_BUSY(SI4432_SPI)) // drop rx and wait tx
(void)SPI_READ_8BIT(SI4432_SPI);
#else
SI4432_log(SI4432_Sel);
SI4432_log(val);
uint8_t i = 0;
do {
SPI1_SDI_HIGH;
SPI1_CLK_HIGH;
SPI1_RESET;
val<<=1;
}while((++i) & 0x07);
#endif
}
static uint8_t shiftIn(void)
{
#ifdef USE_HARDWARE_SPI_MODE
// while (SPI_TX_IS_NOT_EMPTY(SI4432_SPI));
SPI_WRITE_8BIT(SI4432_SPI, 0xFF);
while (SPI_RX_IS_EMPTY(SI4432_SPI)) ; // drop rx and wait tx
return SPI_READ_8BIT(SI4432_SPI);
#else
uint32_t value = 0;
uint8_t i = 0;
do {
value<<=1;
SPI1_CLK_HIGH;
value|=SPI1_portSDO;
SPI1_CLK_LOW;
}while((++i) & 0x07);
return value>>GPIOB_SPI_MISO;
#endif
}
uint32_t SI4432_step_delay = 1500;
uint32_t SI4432_offset_delay = 1500;
#define MINIMUM_WAIT_FOR_RSSI 280
//------------PE4302 -----------------------------------------------
#ifdef __PE4302__
void PE4302_init(void) {
CS_PE_LOW;
}
static unsigned char old_attenuation = 255;
bool PE4302_Write_Byte(unsigned char DATA )
{
// if (old_attenuation == DATA) /// Must always have same execution time
// return false;
old_attenuation = DATA;
#ifdef __ARW621__
DATA = DATA << 1;
#endif
#if PE4302_HW_SHIFT
set_SPI_mode(SPI_MODE_SI);
if (SI4432_SPI_SPEED != PE_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, PE_SPI_SPEED);
SPI_WRITE_8BIT(SI4432_SPI, DATA);
while (SPI_IS_BUSY(SI4432_SPI));
#else // Run PE4312 in SW mode to avoid disturbances
set_SPI_mode(SPI_MODE_PE);
software_shiftOut(DATA);
#endif
CS_PE_HIGH;
my_microsecond_delay(PE_SW_DELAY);
CS_PE_LOW;
my_microsecond_delay(PE_SW_DELAY);
#if PE4302_HW_SHIFT
if (SI4432_SPI_SPEED != PE_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
#endif
return true;
}
#endif
//------------------------------- ADF4351 -------------------------------------
//#define SI5351_INITIAL_FREQ 3206896551
//#define SI5351_INITIAL_FREQ 15000000000ULL
#define NO_SHIFT_MUL 30
#define NO_SHIFT_DIV 30
#ifdef __SI5351__
#include "si5351.h"
static int shifted = 0;
//static int old_shifted = -1;
#define SHIFT_MUL 31
#define SHIFT_DIV 29
//#define SI5351_INITIAL_FREQ 3000000000ULL
void ADF4350_shift_ref(int f) {
if (f == shifted)
return;
shifted = f;
if (si5351_available && shifted)
si5351_set_int_mul_div(0, SHIFT_MUL, SHIFT_DIV, 0);
else
si5351_set_int_mul_div(0, NO_SHIFT_MUL, NO_SHIFT_DIV, 0);
ADF4351_recalculate_PFDRFout();
}
#else
int si5351_available = false;
#endif
#define __NEW_ADF4351__
#ifdef __NEW_ADF4351__
bool ADF4351_frequency_changed = false;
uint16_t R = 1;
int old_R = 0;
uint16_t N = 1;
uint16_t frac = 0;
uint16_t modulus = 200;
uint16_t out_div = 0;
uint16_t mux = 0;
uint16_t csr = 1; // cycle slip reduction, if enabled cp must be lowest value
uint16_t bscm = 1; // Band select clock mode
// uint32_t reg_0 = 0;
uint32_t reg_1 = 0;
uint32_t reg_2 = 0;
uint32_t reg_3 = 0;
uint32_t reg_4 = 0;
uint32_t reg_5 = 0;
uint16_t id = 0;
uint8_t rfPower = 0b00;
static freq_t prev_actual_freq = 0;
bool pdwn = false;
uint16_t powerDown = 0;
static const uint8_t auxPower = 0b11;
// band select divider. 1 to 255.
volatile uint16_t bsDivider = 100; // For set internal logic clock (24M / 192 = 125k) max 125k
// charge pump current, 0 to 15.
static uint8_t cpCurrent = 0; // Must be zero when using either CSR or Fast Lock
// CLKDIV divider (for fastlock and phase resync). 0 to 4095.
volatile uint16_t fastlockDivider = 6; // Not used when in CSR mode
static const uint16_t phase = 1;
enum {
CLKDIVMODE_OFF = 0b00,
CLKDIVMODE_FASTLOCK = 0b01,
CLKDIVMODE_RESYNC = 0b10
} clkDivMode = CLKDIVMODE_FASTLOCK;
static const enum {
LD_LOW = 0b00,
LD_LOCK_DETECT = 0b01,
LD_HIGH = 0b11
} ld_pin = LD_LOCK_DETECT; // Used for led output
bool refDouble = false;
static const bool refDiv2 = false;
static const bool rfEnable = true;
static bool auxEnable = false;
static const bool feedbackFromDivided = true;
static const bool LDF = false; // for fractional mode
static const bool LDP = true; // 6 ns
static const bool LDS = true;
static enum {
LD_LOW_NOISE = 0b00,
LD_LOW_SPUR1 = 0b10,
LD_LOW_SPUR2 = 0b11
} noiseMode = LD_LOW_SPUR1;
/*
static const enum {
p_4_div_5 = 0, // min integer 23, max freq = 3.0GHz
p_8_div_9 = 1 // min integer 75, max freq = 4.4GHz
} prescaler = p_8_div_9;
*/
static const enum {
CPt_NORMAL = 0b00, // Work, use default
CPt_LONG_RESET = 0b01, // Work
CPt_FORCE_SOURCE = 0b10,
CPt_FORCE_SINK = 0b11,
} CP_Test = CPt_NORMAL;
const enum {
CPm_DISABLE = 0b00, // Default
CPm_10pct = 0b01,
CPm_20pct = 0b10,
CPm_30pct = 0b11, // ! Show best linearity result
} CP_Mode = CPm_DISABLE;
#define CS_ADF0_HIGH {palSetLine(LINE_LO_SEL);ADF_CS_DELAY;}
#define CS_ADF0_LOW {palClearLine(LINE_LO_SEL);ADF_CS_DELAY;}
bool ADF4351_dirty = false;
void ADF4351_WriteRegister32(int channel, const uint32_t value)
{
(void) channel;
// Select chip
CS_ADF0_LOW;
// Send 32 bit register
#if 1
SPI_WRITE_8BIT(SI4432_SPI, (value >> 24));
SPI_WRITE_8BIT(SI4432_SPI, (value >> 16));
SPI_WRITE_8BIT(SI4432_SPI, (value >> 8));
SPI_WRITE_8BIT(SI4432_SPI, (value >> 0));
ADF4351_dirty = true;
// while (SPI_IS_BUSY(SI4432_SPI)); // drop rx and wait tx
#else
shiftOut((value >> 24) & 0xFF);
shiftOut((value >> 16) & 0xFF);
shiftOut((value >> 8) & 0xFF);
shiftOut((value >> 0) & 0xFF);
#endif
// unselect
// CS_ADF0_HIGH;
}
void ADF4351_Latch(void)
{
if (ADF4351_dirty == false)
return;
while (SPI_IS_BUSY(SI4432_SPI)); // drop rx and wait tx
CS_ADF0_HIGH;
}
void sendConfig(void) {
if (SI4432_SPI_SPEED != ADF_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, ADF_SPI_SPEED);
if (max2871) {
// pdwn = false; //Power down is no longer active.
uint32_t reg;
const bool fractional = false;
const uint32_t phase = 1; // Recommended
// const bool LDS = (SI5351_INITIAL_FREQ > 3200000000ULL ? true: false);
// reg 5
// LD pin register 5
reg = (ld_pin<<22) | 0b101;
if (reg!=reg_5) {ADF4351_WriteRegister32(id, reg); reg_5 = reg;}
// reg 4
// bs devider fb rf divider bs divider VCO down mtld aux sel aux en aux pwr rf en rf pwr register 4
reg = (bsDivider>>7) << 24 | (feedbackFromDivided<<23) | (out_div<<20) | ((bsDivider&0x7f)<<12) | (powerDown<<11) | (0<<10) | (0<<9) | (auxEnable<<8) | (auxPower<<6) | (rfEnable<<5) | (rfPower<<3) | 0b100;
if (reg!=reg_4) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_4 = reg;}
// reg 3
// bscm | csr mutedel clkdiv mode clkdiv register 3
reg = (bscm<<23) | (csr<<18) | (0<<17) | (clkDivMode<<15) | (fastlockDivider<<3) | 0b011;
if (reg!=reg_3) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_3 = reg;}
// reg 2 cp three reset
// LD speed noise mode muxout ref dbr ref div2 R DB CP current LDF LDP PD pol powerdown state counter register 2
reg = (LDS<<31) | (LD_LOW_SPUR1<<29) | (mux<<26) | (refDouble<<25) | (refDiv2 << 24) | (R<<14) | (0<<13) | (cpCurrent<<9) | (LDF<<8) | (LDP<<7) | (1<<6) | (pdwn<<5) | (0<<4) | (0<<3) | 0b010;
if (reg!=reg_2) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_2 = reg;}
// reg 1
// CP mode CP test phase frac modulus
reg = (CP_Mode<<29) | (CP_Test<<27) | (phase<<15) | (modulus<<3) | 0b001;
if (reg!=reg_1) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_1 = reg;}
// reg 0 (need always send for apply some reg 1 - 5 settings
reg = (fractional<<31) | (N<<15) | (frac<<3) | 0b000;
/*if (reg!=reg_0)*/ {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg);/* reg_0 = reg;*/}
ADF4351_Latch();
} else {
// pdwn = false; //Power down is no longer active.
uint32_t reg;
#ifdef BOARD_DOUBLE_REF_MODE
uint32_t prescaler = (N > 75) ? 1 : 0;
#else
uint32_t prescaler = 1;
#endif
// reg 5
// LD pin register 5
reg = (ld_pin<<22) | (0b11<<19)| 0b101;
if (reg!=reg_5) {ADF4351_WriteRegister32(id, reg); reg_5 = reg;}
// reg 4
// fb rf divider bs divider VCO down mtld aux sel aux en aux pwr rf en rf pwr register 4
reg = (feedbackFromDivided<<23) | (out_div<<20) | (bsDivider<<12) | (0<<11) | (0<<10) | (0<<9) | (auxEnable<<8) | (auxPower<<6) | (rfEnable<<5) | (rfPower<<3) | 0b100;
if (reg!=reg_4) { ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_4 = reg;}
// reg 3
// csr clkdiv mode clkdiv register 3
reg = (csr<<18) | (clkDivMode<<15) | (fastlockDivider<<3) | 0b011;
if (reg!=reg_3) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_3 = reg;}
// reg 2 cp three reset
// noise mode muxout ref dbr ref div2 R DB CP current LDF LDP PD pol powerdown state counter register 2
reg = (LD_LOW_NOISE<<29) | (mux<<26) | (refDouble<<25) | (refDiv2 << 24) | (R<<14) | (0<<13) | (cpCurrent<<9) | (LDF<<8) | (LDP<<7) | (1<<6) | (pdwn<<5) | (0<<4) | (0<<3) | 0b010;
if (reg!=reg_2) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_2 = reg;}
// reg 1
// prescaler phase frac modulus
reg = (prescaler<<27) | (phase<<15) | (modulus<<3) | 0b001;
if (reg!=reg_1) {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg); reg_1 = reg;}
// reg 0 (need always send for apply some reg 1 - 5 settings
reg = (N<<15) | (frac<<3) | 0b000;
/*if (reg!=reg_0)*/ {ADF4351_Latch(); ADF4351_WriteRegister32(id, reg);/* reg_0 = reg;*/}
ADF4351_Latch();
}
if (SI4432_SPI_SPEED != ADF_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
}
void sendPowerdown(bool p) {
if(pdwn == p)
return;
pdwn = p;
uint32_t reg = (noiseMode<<29) | (0b001<<26) | (refDouble<<25) | (refDiv2 << 24) | (R<<14) | (cpCurrent<<9) | (0<<8) | (0<<7) | (1<<6) | (pdwn<<5) | 0b010;
if (reg!=reg_2) {ADF4351_WriteRegister32(id, reg); reg_2 = reg;ADF4351_Latch(); }
}
static uint32_t adf4350_get_O(uint64_t freqHz) {
if(max2871) {
if(freqHz > 3000000000) return 0; // 1
else if(freqHz > 1500000000) return 1; // 2
else if(freqHz > 750000000) return 2; // 4
else if(freqHz > 375000000) return 3; // 8
else if(freqHz > 187500000) return 4; // 16
else if(freqHz > 137500000) return 5; // 32
else if(freqHz > 68750000) return 6; // 64
else/*if(freqHz > 34375000)*/return 7; //128
}else{
if(freqHz > 2200000000) return 0; // 1
else if(freqHz > 1100000000) return 1; // 2
else if(freqHz > 550000000) return 2; // 4
else if(freqHz > 275000000) return 3; // 8
else/*if(freqHz > 137500000)*/return 4; // 16
}
}
freq_t xtal;
uint64_t ADF4351_set_frequency(int channel, uint64_t freqHz) {
(void) channel;
// RFout = xtalFreqHz × (N + FRAC/MOD) = xtalFreqHz × (N * MOD + FRAC) / MOD
// step = xtalFreqHz / MOD; !!!! should get integer result, also this result should divided by 16
// for 24M step = 24M / 4000 = 6k and 6k/16 = 375
// Nx = RFout / step
// N * 4000 + frac = Nx
// N = Nx / 4000
// frac = Nx % 4000
#if 1
out_div = adf4350_get_O(freqHz);
#ifdef __SI5351__
// if (shifted != old_shifted || xtal == 0)
{
// old_shifted = shifted;
if (shifted)
xtal = (config.setting_frequency_30mhz * SHIFT_MUL) / SHIFT_DIV;
else
{
#endif
xtal = config.setting_frequency_30mhz; // * NO_SHIFT_MUL)/ NO_SHIFT_DIV;
#ifdef __SI5351__
}
}
#endif
if (refDouble) {
xtal<<=1;
}
if (R > 1)
xtal /= R;
#if 1
uint32_t modulus_x2 = modulus<<1;
uint32_t INTA_F = (((freqHz << out_div) * (uint64_t)(modulus_x2*FREQ_MULTIPLIER))/ xtal) + 1;
N = INTA_F / modulus_x2;
frac = (INTA_F - N * modulus_x2)>>1;
if (frac >= modulus) {
frac -= modulus;
N++;
}
freq_t actual_freq = (((uint64_t)xtal *(uint64_t)(N * modulus +frac)) >> out_div) / (modulus*FREQ_MULTIPLIER);
#else
uint32_t _N = ((freqHz<<out_div) * (uint64_t)modulus) / xtal;
N = _N / modulus;
frac = _N % modulus;
#endif
#else
uint32_t MOD = ADF4350_modulo;
if (MOD == 0)
MOD = 60;
uint32_t MOD_X2 = MOD<<1;
uint32_t INTA_F = ((freq * (uint64_t)output_divider) * (uint64_t)MOD_X2/ PFDR) + 1;
uint32_t INTA = INTA_F / MOD_X2;
uint32_t FRAC = (INTA_F - INTA * MOD_X2)>>1;
if (FRAC >= MOD) {
FRAC -= MOD;
INTA++;
}
freq_t actual_freq = ((uint64_t)xtal *(N * modulus +frac))/ (1<<out_div) / modulus;
#endif
if (prev_actual_freq == actual_freq)
return prev_actual_freq;
prev_actual_freq = actual_freq;
ADF4351_frequency_changed = true;
sendConfig();
return actual_freq;
}
void ADF4351_force_refresh(void) {
prev_actual_freq = 0;
// reg_0 = 0;
reg_1 = 0;
reg_2 = 0;
reg_3 = 0;
reg_4 = 0;
}
void ADF4351_modulo(int m)
{
modulus = m;
}
uint16_t ADF4351_get_modulo(void)
{
return modulus;
}
void ADF4351_spur_mode(int S)
{
(void) S;
// noiseMode = S;
}
void ADF4351_R_counter(int new_R)
{
if (new_R == old_R)
return;
old_R = new_R;
refDouble = false;
if (new_R < 0) {
refDouble = true;
new_R = -new_R;
}
if (new_R<1)
return;
R = new_R;
if (R>1)
setting.increased_R = true;
else
setting.increased_R = false;
clear_frequency_cache(); // When R changes the possible frequencies will change
}
void ADF4351_mux(int m)
{
mux = m;
sendConfig();
}
void ADF4351_csr(int c)
{
csr = (c & 0x1);
sendConfig();
}
void ADF4351_fastlock(int c)
{
clkDivMode = (c & 0x3);
sendConfig();
}
void ADF4351_CP(int p)
{
if (cpCurrent == p)
return;
cpCurrent = p;
sendConfig();
}
uint16_t ADF4351_get_CP(void)
{
return cpCurrent;
}
void ADF4351_drive(int p)
{
if (rfPower == p)
return;
rfPower = p;
sendConfig();
my_microsecond_delay(1000);
}
#if 0
void ADF4351_aux_drive(int p)
{
if ( auxPower == p)
return;
auxPower = p;
sendConfig();
}
#endif
void ADF4351_enable_aux_out(int s)
{
if ( auxEnable == s)
return;
auxEnable = s;
sendConfig();
}
void ADF4351_enable(int s)
{
if ( powerDown == !s)
return;
powerDown = !s;
sendConfig();
osalThreadSleepMilliseconds(10);
}
void ADF4351_enable_out(int s)
{
if ( pdwn == !s)
return;
powerDown = !s;
pdwn = !s;
sendConfig();
osalThreadSleepMilliseconds(10);
}
void ADF4351_recalculate_PFDRFout(void) {
int local_r = old_R;
old_R = -1;
ADF4351_R_counter(local_r);
sendConfig();
}
void ADF4351_Setup(void)
{
CS_ADF0_HIGH;
#ifdef __SI5351__
si5351_available = si5351_init();
if (si5351_available) {
si5351_set_frequency(0, (config.setting_frequency_30mhz * NO_SHIFT_MUL)/ NO_SHIFT_DIV /100, 0);
si5351_set_int_mul_div(0, NO_SHIFT_MUL, NO_SHIFT_DIV, 0);
}
si5351_available = false; // Don't use shifting
#endif
cpCurrent = 0;
if (max2871) {
// refDouble = true;
} else {
ADF4351_csr(1); //Cycle slip enabled
ADF4351_fastlock(1); // Fastlock enabled
cpCurrent = 0;
}
// R = 1;
ADF4351_set_frequency(0,3000000000);
ADF4351_mux(0); // Tristate
}
#else
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) ((bitvalue) ? bitSet(value, bit) : bitClear(value, bit))
#define maskedWrite(reg, bit, mask, value) (reg) &= ~(((uint32_t)mask) << (bit)); (reg) |= ((((uint32_t) (value)) & ((uint32_t)mask)) << (bit));
#define CS_ADF0_HIGH {palSetLine(LINE_LO_SEL);ADF_CS_DELAY;}
#define CS_ADF1_HIGH {ADF_CS_DELAY;palSetLine(LINE_LO_SEL);}
#define CS_ADF0_LOW {palClearLine(LINE_LO_SEL);ADF_CS_DELAY;}
#define CS_ADF1_LOW {ADF_CS_DELAY;palClearLine(LINE_LO_SEL);}
#define CS_ADF_LOW(ch) {palClearLine(ch);ADF_CS_DELAY;}
#define CS_ADF_HIGH(ch) {ADF_CS_DELAY;palSetLine(ch);}
uint32_t registers[6] = {0xC88000, 0x8008011, 0x1800C642, 0x48963,0xA5003C , 0x580005} ; //10 MHz ref
uint32_t old_registers[6];
int debug = 0;
ioline_t ADF4351_LE[2] = { LINE_LO_SEL, LINE_LO_SEL};
//int ADF4351_Mux = 7;
bool ADF4351_frequency_changed = false;
//#define DEBUG(X) // Serial.print( X )
//#define DEBUGLN(X) Serial.println( X )
//#define DEBUGFLN(X,Y) Serial.println( X,Y )
//#define DEBUGF(X,Y) Serial.print( X,Y )
#define DEBUG(X)
#define DEBUGLN(X)
#define XTAL 300000000
uint64_t PFDRFout[6] = {XTAL,XTAL,XTAL,10000000,10000000,10000000}; //Reference freq in MHz
int64_t
ADF4350_modulo = 0, // Linked to spur table!!!!!
target_freq;
int old_R = 0;
void ADF4351_Setup(void)
{
// palSetPadMode(GPIOA, 1, PAL_MODE_OUTPUT_PUSHPULL );
// palSetPadMode(GPIOA, 2, PAL_MODE_OUTPUT_PUSHPULL );
local_setting_frequency_30mhz_x100 = config.setting_frequency_30mhz;
#ifdef __SI5351__
si5351_available = si5351_init();
if (si5351_available)
si5351_set_frequency(0, 30000000, 0);
si5351_available = false; // Don't use shifting
#endif
// SPI3_CLK_HIGH;
// SPI3_SDI_HIGH;
CS_ADF0_HIGH;
// CS_ADF1_HIGH;
// bitSet (registers[2], 17); // R set to 8
// bitClear (registers[2], 14); // R set to 8
// while(1) {
//
ADF4351_R_counter(1);
ADF4351_CP(0);
ADF4351_fastlock(1); // Fastlock enabled
ADF4351_csr(1); //Cycle slip enabled
ADF4351_set_frequency(0,200000000);
ADF4351_mux(0); // Tristate
// ADF4351_mux(6); // Show lock on led
}
void ADF4351_WriteRegister32(int channel, const uint32_t value)
{
// Select chip
CS_ADF_LOW(ADF4351_LE[channel]);
// Send 32 bit register
#if 1
SPI_WRITE_8BIT(SI4432_SPI, (value >> 24));
SPI_WRITE_8BIT(SI4432_SPI, (value >> 16));
SPI_WRITE_8BIT(SI4432_SPI, (value >> 8));
SPI_WRITE_8BIT(SI4432_SPI, (value >> 0));
while (SPI_IS_BUSY(SI4432_SPI)); // drop rx and wait tx
#else
shiftOut((value >> 24) & 0xFF);
shiftOut((value >> 16) & 0xFF);
shiftOut((value >> 8) & 0xFF);
shiftOut((value >> 0) & 0xFF);
#endif
// unselect
CS_ADF_HIGH(ADF4351_LE[channel]);
}
void ADF4351_Set(int channel)
{
#if 0
for (int i = 5; i >= 0; i--) {
if (registers[i] != old_registers[i])
goto update;
}
return;
update:
#endif
set_SPI_mode(SPI_MODE_SI);
if (SI4432_SPI_SPEED != ADF_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, ADF_SPI_SPEED);
for (int i = 5; i >= 0; i--) {
#if 0
if (i == 0 || registers[i] != old_registers[i])
#endif
ADF4351_WriteRegister32(channel, registers[i]);
old_registers[i] = registers[i];
}
if (SI4432_SPI_SPEED != ADF_SPI_SPEED)
SPI_BR_SET(SI4432_SPI, SI4432_SPI_SPEED);
}
static freq_t prev_actual_freq = 0;
void ADF4351_force_refresh(void) {
prev_actual_freq = 0;
for (int i = 5; i >= 0; i--)
old_registers[i] = 0;
}
void ADF4351_modulo(int m)
{
ADF4350_modulo = m;
// ADF4351_set_frequency(0, (uint64_t)prev_actual_freq);
}
uint64_t ADF4351_set_frequency(int channel, uint64_t freq) // freq / 10Hz
{
uint64_t actual_freq = ADF4351_prepare_frequency(channel,freq);
if (actual_freq != prev_actual_freq) {
ADF4351_frequency_changed = true;
ADF4351_Set(channel);
prev_actual_freq = actual_freq;
}
return actual_freq;
}
void ADF4351_spur_mode(int S)
{
bitWrite(registers[2], 29, S & 1);
bitWrite(registers[2], 30, S & 2);
ADF4351_Set(0);
}
void ADF4351_R_counter(int R)
{
if (R == old_R)
return;
old_R = R;
int dbl = false;
if (R < 0) {
dbl = true;
R = -R;
}
if (R<1)
return;
bitWrite(registers[2], 25, dbl); // Reference doubler
for (int channel=0; channel < 6; channel++) {
PFDRFout[channel] = (local_setting_frequency_30mhz_x100 * (dbl?2:1)) / R;
}
maskedWrite(registers[2],14, 0x3FF, R);
// ADF4351_Set(0); // Let next frequency set do the writing
// ADF4351_force_refresh();
clear_frequency_cache(); // When R changes the possible frequencies will change
}
void ADF4351_recalculate_PFDRFout(void){
int local_r = old_R;
old_R = -1;
local_setting_frequency_30mhz_x100 = config.setting_frequency_30mhz;
ADF4351_R_counter(local_r);
}
void ADF4351_mux(int R)
{
maskedWrite(registers[2],26, 0x7, R);
// registers[2] &= ~(((uint32_t) 0x7) << 26);
// registers[2] |= (((uint32_t)R & 0x07) << 26);
ADF4351_Set(0);
}
void ADF4351_csr(int c)
{
maskedWrite(registers[3],18, 0x1, c);
// registers[3] &= ~(((uint32_t) 0x1) << 18);
// registers[3] |= (((uint32_t)c & 0x01) << 18);
ADF4351_Set(0);
}
void ADF4351_fastlock(int c)
{
maskedWrite(registers[3],15, 0x3, c);
// registers[3] &= ~(((uint32_t) 0x3) << 15);
// registers[3] |= (((uint32_t)c & 0x03) << 15);
ADF4351_Set(0);
}
void ADF4351_CP(int p)
{
maskedWrite(registers[2],9, 0xF, p);
// registers[2] &= ~(((uint32_t)0xF) << 9);
// registers[2] |= (((uint32_t) p) << 9);
ADF4351_Set(0);
}
void ADF4351_drive(int p)
{
if (((registers[4] >> 3) & 0x03 ) == (p & 0x03))
return;
maskedWrite(registers[4],3, 0x3, p);
// p &= 0x03;
// registers[4] &= ~(((uint32_t)0x3) << 3);
// registers[4] |= (((uint32_t) p) << 3);
ADF4351_Set(0);
my_microsecond_delay(1000);
}
void ADF4351_aux_drive(int p)
{
if (((registers[4] >> 6) & 0x03 ) == (p & 0x03))
return;
maskedWrite(registers[4],6, 0x3, p);
// p &= 0x03;
// registers[4] &= ~(((uint32_t)0x3) << 6);
// registers[4] |= (((uint32_t) p) << 6);
ADF4351_Set(0);
}