-
Notifications
You must be signed in to change notification settings - Fork 0
/
pokeDeepLearn.main.js
230 lines (175 loc) · 6.34 KB
/
pokeDeepLearn.main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
ui.Init()
let myData = new PokeData()
// Stage one: First visit
// Stage two: Getting the model
// Stage three: Model settled
myData.Init().then(() => {
ui.StageOneHandler(myData)
})
ui.AddStartStageTwoCallback(async () => {
ui.LogStatus('Loading Pokemon data...');
const [trainDataSet, valDataSet] = await loadMyData()
ui.LogStatus('Creating model...')
let model
const modelType = ui.GetModelType()
if (modelType === 'modelTypeLoad') {
model = await tf.loadLayersModel(PRE_TRAINED_MODEL_PATH)
model.summary() // console.log the model def
/* Can also log the model def in the following way:*/
// let modelDefDesc = ''
// model.summary(null, null, (message)=> modelDefDesc += message + "<br/>");
// someDom.innerHTML = modelDefDesc
ui.LogStatus('Model settled.')
await ui.PredictDemo(myData, model)
} else if (isModelTypeExtraTrain()) {
model = await tf.loadLayersModel(PRE_TRAINED_MODEL_PATH)
model.summary()
ui.LogStatus('Warming up. Please wait...')
await doTraining(model, trainDataSet, valDataSet, () => ui.PredictDemo(myData, model))
ui.LogStatus('Model settled.')
if (IS_DOWNLOAD_MODEL_AFTER_TRAINING) {
await downloadModel(model)
}
} else {
model = getModelDef(MODEL_CAPACITY)
model.summary()
ui.LogStatus('Warming up. Please wait...')
await doTraining(model, trainDataSet, valDataSet, () => ui.PredictDemo(myData, model));
ui.LogStatus('Model settled.')
if (IS_DOWNLOAD_MODEL_AFTER_TRAINING) {
await downloadModel(model)
}
}
ui.StageThreeHandler(myData, model)
})
function isModelTypeExtraTrain() {
return ui.GetModelType() === 'modelTypeExtraTrain'
}
function getModelHyperParams() {
return isModelTypeExtraTrain() ?
HYPER_PARAM_FOR_EXTRA_TRAIN : ui.GetHyperParam()
}
async function downloadModel(model) {
await model.save(`downloads://my-trained-model-${Date.now()}`)
}
async function loadMyData() {
return tf.tidy(() => {
const myTrainDataGenerator = tf.data.generator(myData.GetTrainData)
const myValDataGenerator = tf.data.generator(myData.GetValData)
/*
await myGeneratorDataset.forEachAsync((e) => {
console.log(e)
e.ys.print()
})
*/
/*
const batchData = myGeneratorDataset.batch(4)
batchData.forEachAsync(
e => console.log(e))
let rtn = await batchData.take(1).toArray()
console.log(rtn)*/
const hyperParams = getModelHyperParams()
const trainData = myTrainDataGenerator.shuffle(hyperParams.noOfXsPerBatch * 2).batch(hyperParams.noOfXsPerBatch).repeat() // myTrainDataGenerator.batch(NO_OF_XS_PER_BATCH).repeat()
const valData = myValDataGenerator.batch(hyperParams.noOfXsPerBatch/2).repeat()
return [trainData, valData]
})
}
const getModelDef = (capacityLv = 0) => {
const rtn = tf.sequential()
rtn.add(tf.layers.conv2d({
inputShape: [IMAGE_PROCESS_H, IMAGE_PROCESS_W, 3],
kernelSize: 3,
filters: 64,
activation: 'relu'
}))
rtn.add(tf.layers.dropout({ rate: 0.25 }))
rtn.add(tf.layers.maxPooling2d({
poolSize: 2,
strides: 2
}))
rtn.add(tf.layers.conv2d({
kernelSize: 3,
filters: 32,
activation: 'relu'
}))
rtn.add(tf.layers.maxPooling2d({
poolSize: 2,
strides: 2
}))
rtn.add(tf.layers.dropout({ rate: 0.25 }))
if (capacityLv > 0) {
rtn.add(tf.layers.conv2d({
kernelSize: 3,
filters: 32,
activation: 'relu'
}))
rtn.add(tf.layers.maxPooling2d({
poolSize: 2,
strides: 2
}))
rtn.add(tf.layers.conv2d({
kernelSize: 3,
filters: 32,
activation: 'relu'
}))
}
rtn.add(tf.layers.flatten({}))
rtn.add(tf.layers.dense({
units: 64,
kernelRegularizer: tf.regularizers.l2(),
//activityRegularizer: 'l1l2',
activation: 'relu'
}))
rtn.add(tf.layers.dropout({ rate: 0.25 }))
rtn.add(tf.layers.dense({
units: POKE_TYPES_REF.length,
activation: 'sigmoid'// 'softmax' //'sigmoid'
}))
return rtn
}
const doTraining = async (model, trainDataSet, valDataSet, iterEndHandler) => {
model.compile({
optimizer: 'adam',//tf.train.adam(0.0001), //'rmsprop', //'sgd', //'adam',
loss: 'binaryCrossentropy', //'categoricalCrossentropy' //'binaryCrossentropy',
metrics: ['binaryAccuracy']
})
const hyperParams = getModelHyperParams()
const totalNoOfBatches = NO_OF_BATCHES_PER_EPOCH * hyperParams.noOfEpoch
let finishedBatchCount = 0
const fitDatasetArgs = {
batchesPerEpoch: NO_OF_BATCHES_PER_EPOCH,
epochs: hyperParams.noOfEpoch,
validationData: valDataSet,
validationBatches: NO_OF_VAL_BATCHES_PER_EPOCH,
callbacks: {
onBatchEnd: async (batch, logs) => {
finishedBatchCount++
ui.LogStatus(
`Training... (${(finishedBatchCount / totalNoOfBatches * 100).toFixed(1)}% complete).` +
` To stop training, refresh or close page.`)
devLog({ ...logs})
if (iterEndHandler && batch % 1 === 0) {
iterEndHandler()
}
if (batch % 10 === 0) {
devLog(`# of tensors: ${tf.memory().numTensors}`)
//console.log({ ...tf.memory() })
}
await tf.nextFrame()
},
onEpochEnd: async (epoch, logs) => {
if (epoch === hyperParams.noOfEpoch) {
finalValAcc = logs.val_acc
}
ui.PlotLoss(finishedBatchCount, logs.loss, logs.val_loss)
//ui.PlotAccuracy(finishedBatchCount, logs.binaryAccuracy, logs.val_binaryAccuracy)
devLog(`############------------------- EPOCH ${epoch}--------------------------#################`)
if (iterEndHandler) {
iterEndHandler()
}
await tf.nextFrame()
}
}
}
await model.fitDataset(trainDataSet, fitDatasetArgs)
}