Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

训练正常,测试推理时检测不到任何东西 #252

Open
chuck0518 opened this issue Apr 14, 2020 · 1 comment
Open

训练正常,测试推理时检测不到任何东西 #252

chuck0518 opened this issue Apr 14, 2020 · 1 comment

Comments

@chuck0518
Copy link

I0413 18:42:17.436262 23758 solver.cpp:253] Iteration 20510 (0.360757 iter/s, 27.7195s/10 iters), loss = 6.13863
I0413 18:42:17.436317 23758 solver.cpp:272] Train net output #0: det_loss1 = 0.341735 (* 1 = 0.341735 loss)
I0413 18:42:17.436328 23758 solver.cpp:272] Train net output #1: det_loss2 = 3.03929 (* 1 = 3.03929 loss)
I0413 18:42:17.436337 23758 sgd_solver.cpp:121] Iteration 20510, lr = 0.0005
I0413 18:42:20.734402 23758 yolov3_layer.cpp:532] noobj: 0.00250922 obj: 0.476783 iou: 0.761839 cat: 0.941965 recall: 0.991667 recall75: 0.596111 count: 5
I0413 18:42:20.778740 23758 yolov3_layer.cpp:532] noobj: 0.0030255 obj: 0.461223 iou: 0.589617 cat: 0.919322 recall: 0.692824 recall75: 0.351311 count: 25
I0413 18:42:26.167347 23758 yolov3_layer.cpp:532] noobj: 0.00195143 obj: 0.640569 iou: 0.791826 cat: 0.992684 recall: 0.989796 recall75: 0.766667 count: 3
I0413 18:42:26.212055 23758 yolov3_layer.cpp:532] noobj: 0.00242032 obj: 0.427725 iou: 0.554173 cat: 0.901831 recall: 0.621256 recall75: 0.318708 count: 23
I0413 18:42:30.826737 23758 yolov3_layer.cpp:532] noobj: 0.00174544 obj: 0.444056 iou: 0.783672 cat: 0.972636 recall: 0.980769 recall75: 0.724359 count: 2
I0413 18:42:30.862072 23758 yolov3_layer.cpp:532] noobj: 0.0034129 obj: 0.412179 iou: 0.529127 cat: 0.856678 recall: 0.615313 recall75: 0.24171 count: 22
I0413 18:42:35.728987 23758 yolov3_layer.cpp:532] noobj: 0.00224608 obj: 0.483906 iou: 0.788536 cat: 0.905526 recall: 0.986667 recall75: 0.771111 count: 2
I0413 18:42:35.751526 23758 yolov3_layer.cpp:532] noobj: 0.00365666 obj: 0.49535 iou: 0.535215 cat: 0.864543 recall: 0.610597 recall75: 0.327094 count: 25
I0413 18:42:41.524915 23758 yolov3_layer.cpp:532] noobj: 0.00218737 obj: 0.43209 iou: 0.792419 cat: 0.970947 recall: 0.979167 recall75: 0.674405 count: 4

@eric612 博主,您好,训练时loss正常(如上),推理时使用detect.py检测不到任何物体,有尝试将test.prototxt的data改为deploy的data层,去除eval层拿来检测,以及将去除过的test.prototxt去bn,也是检测不到任何物体。类别相应参数也是正确的,例如75改为21(20类改为2类),预处理部分应该也没错。博主看下问题出在哪?

@chuck0518
Copy link
Author

I0417 01:14:06.763319 10804 solver.cpp:443] Iteration 4000, Testing net (#0)
I0417 01:14:06.763365 10804 net.cpp:679] Ignoring source layer label_data_1_split
I0417 01:14:06.763638 10804 net.cpp:679] Ignoring source layer Yolov3Loss1
I0417 01:14:06.763650 10804 net.cpp:679] Ignoring source layer Yolov3Loss2
I0417 01:14:12.269546 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:14:24.775182 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:14:37.382987 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:14:49.903826 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:15:02.552605 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:15:08.886791 10804 solver.cpp:550] class1: 0.426832
I0417 01:15:08.887163 10804 solver.cpp:550] class2: 0.100249
I0417 01:15:08.887171 10804 solver.cpp:556] Test net output #0: detection_eval = 0.263541
I0417 01:15:11.730825 10804 solver.cpp:253] Iteration 4000 (0.106753 iter/s, 93.674s/10 iters), loss = 5.64835
I0417 01:15:11.730870 10804 solver.cpp:272] Train net output #0: det_loss1 = 0.923485 (* 1 = 0.923485 loss)
I0417 01:15:11.730876 10804 solver.cpp:272] Train net output #1: det_loss2 = 4.81016 (* 1 = 4.81016 loss)
I0417 01:15:11.730882 10804 sgd_solver.cpp:121] Iteration 4000, lr = 0.0005
I0417 01:15:13.953441 10804 yolov3_layer.cpp:532] noobj: 0.00172454 obj: 0.239341 iou: 0.735912 cat: 0.968337 recall: 0.958974 recall75: 0.5 count: 3
I0417 01:15:13.996486 10804 yolov3_layer.cpp:532] noobj: 0.00228207 obj: 0.222057 iou: 0.58847 cat: 0.837299 recall: 0.70797 recall75: 0.244564 count: 18
I0417 01:15:19.156597 10804 yolov3_layer.cpp:532] noobj: 0.00165788 obj: 0.276557 iou: 0.719697 cat: 0.865085 recall: 0.982143 recall75: 0.465476 count: 3
I0417 01:15:19.208161 10804 yolov3_layer.cpp:532] noobj: 0.00228386 obj: 0.257899 iou: 0.555846 cat: 0.839862 recall: 0.649744 recall75: 0.244544 count: 21
I0417 01:15:23.632382 10804 yolov3_layer.cpp:532] noobj: 0.00153054 obj: 0.216947 iou: 0.760579 cat: 0.942966 recall: 0.985714 recall75: 0.566667 count: 2
I0417 01:15:23.646881 10804 yolov3_layer.cpp:532] noobj: 0.00309506 obj: 0.241489 iou: 0.527233 cat: 0.790365 recall: 0.543724 recall75: 0.238325 count: 21
I0417 01:15:28.743680 10804 yolov3_layer.cpp:532] noobj: 0.00134971 obj: 0.233779 iou: 0.743891 cat: 0.905655 recall: 0.989796 recall75: 0.556122 count: 2
I0417 01:15:28.775761 10804 yolov3_layer.cpp:532] noobj: 0.00305693 obj: 0.286601 iou: 0.511557 cat: 0.835649 recall: 0.546304 recall75: 0.189129 count: 21
I0417 01:15:34.059072 10804 yolov3_layer.cpp:532] noobj: 0.00146028 obj: 0.194867 iou: 0.728285 cat: 0.911091 recall: 0.964744 recall75: 0.439011 count: 3
I0417 01:15:34.087019 10804 yolov3_layer.cpp:532] noobj: 0.00284167 obj: 0.263691 iou: 0.537525 cat: 0.798906 recall: 0.618155 recall75: 0.203408 count: 21
I0417 01:15:40.074692 10804 yolov3_layer.cpp:532] noobj: 0.00172411 obj: 0.170228 iou: 0.706618 cat: 0.864403 recall: 0.971154 recall75: 0.408272 count: 4
I0417 01:15:40.091838 10804 yolov3_layer.cpp:532] noobj: 0.0023063 obj: 0.227156 iou: 0.52783 cat: 0.831536 recall: 0.586209 recall75: 0.178665 count: 21
I0417 01:15:41.205112 10804 solver.cpp:253] Iteration 4010 (0.339281 iter/s, 29.4741s/10 iters), loss = 6.29814
I0417 01:15:41.205164 10804 solver.cpp:272] Train net output #0: det_loss1 = 0.453541 (* 1 = 0.453541 loss)
I0417 01:15:41.205171 10804 solver.cpp:272] Train net output #1: det_loss2 = 5.71122 (* 1 = 5.71122 loss)
I0417 01:15:41.205179 10804 sgd_solver.cpp:121] Iteration 4010, lr = 0.0005
I0417 01:15:46.354162 10804 yolov3_layer.cpp:532] noobj: 0.00223973 obj: 0.248727 iou: 0.744506 cat: 0.94056 recall: 0.975556 recall75: 0.53254 count: 4
I0417 01:15:46.368454 10804 yolov3_layer.cpp:532] noobj: 0.00255317 obj: 0.264948 iou: 0.559019 cat: 0.804919 recall: 0.688048 recall75: 0.196554 count: 20
I0417 01:15:52.485841 10804 yolov3_layer.cpp:532] noobj: 0.0016891 obj: 0.279516 iou: 0.757101 cat: 0.939476 recall: 0.962302 recall75: 0.539683 count: 4
I0417 01:15:52.531217 10804 yolov3_layer.cpp:532] noobj: 0.00184066 obj: 0.212435 iou: 0.539708 cat: 0.862308 recall: 0.611862 recall75: 0.191591 count: 19
I0417 01:15:59.140897 10804 yolov3_layer.cpp:532] noobj: 0.00158328 obj: 0.177992 iou: 0.750056 cat: 0.976023 recall: 0.967857 recall75: 0.579762 count: 4
I0417 01:15:59.160989 10804 yolov3_layer.cpp:532] noobj: 0.00162256 obj: 0.215766 iou: 0.546512 cat: 0.84008 recall: 0.633807 recall75: 0.224326 count: 17
I0417 01:16:05.295040 10804 yolov3_layer.cpp:532] noobj: 0.00135174 obj: 0.172353 iou: 0.708307 cat: 0.915387 recall: 0.869231 recall75: 0.448718 count: 3
I0417 01:16:05.330834 10804 yolov3_layer.cpp:532] noobj: 0.00180614 obj: 0.233261 iou: 0.578229 cat: 0.841397 recall: 0.662688 recall75: 0.275352 count: 18
I0417 01:16:11.471474 10804 yolov3_layer.cpp:532] noobj: 0.00170454 obj: 0.145291 iou: 0.720401 cat: 0.957166 recall: 0.956667 recall75: 0.499762 count: 4
I0417 01:16:11.546625 10804 yolov3_layer.cpp:532] noobj: 0.00216869 obj: 0.245605 iou: 0.575199 cat: 0.82772 recall: 0.672193 recall75: 0.245107 count: 19
I0417 01:16:16.386481 10804 solver.cpp:253] Iteration 4020 (0.284243 iter/s, 35.1811s/10 iters), loss = 5.28766
I0417 01:16:16.386528 10804 solver.cpp:272] Train net output #0: det_loss1 = 1.1634 (* 1 = 1.1634 loss)
I0417 01:16:16.386533 10804 solver.cpp:272] Train net output #1: det_loss2 = 2.83057 (* 1 = 2.83057 loss)
I0417 01:16:16.386539 10804 sgd_solver.cpp:121] Iteration 4020, lr = 0.0005
I0417 01:16:16.990921 10804 yolov3_layer.cpp:532] noobj: 0.0020566 obj: 0.164882 iou: 0.70567 cat: 0.929537 recall: 0.927407 recall75: 0.423704 count: 4
I0417 01:16:17.016185 10804 yolov3_layer.cpp:532] noobj: 0.00201062 obj: 0.231504 iou: 0.544762 cat: 0.867614 recall: 0.608327 recall75: 0.213358 count: 18
I0417 01:16:22.432796 10804 yolov3_layer.cpp:532] noobj: 0.0021696 obj: 0.233608 iou: 0.730122 cat: 0.899389 recall: 0.958242 recall75: 0.51337 count: 4
I0417 01:16:22.476905 10804 yolov3_layer.cpp:532] noobj: 0.00314332 obj: 0.285354 iou: 0.584276 cat: 0.85679 recall: 0.649635 recall75: 0.304402 count: 19
I0417 01:16:27.626332 10804 yolov3_layer.cpp:532] noobj: 0.00166812 obj: 0.251183 iou: 0.720748 cat: 0.927985 recall: 0.923077 recall75: 0.551282 count: 2
I0417 01:16:27.656478 10804 yolov3_layer.cpp:532] noobj: 0.00283306 obj: 0.300209 iou: 0.525543 cat: 0.816252 recall: 0.584902 recall75: 0.204652 count: 18
I0417 01:16:34.376063 10804 yolov3_layer.cpp:532] noobj: 0.00204174 obj: 0.276532 iou: 0.726224 cat: 0.846325 recall: 0.958889 recall75: 0.533889 count: 4
I0417 01:16:34.412142 10804 yolov3_layer.cpp:532] noobj: 0.00180618 obj: 0.263592 iou: 0.564033 cat: 0.82118 recall: 0.662399 recall75: 0.266307 count: 18
I0417 01:16:39.552242 10804 yolov3_layer.cpp:532] noobj: 0.00156027 obj: 0.268313 iou: 0.70862 cat: 0.91409 recall: 0.955357 recall75: 0.35119 count: 3
I0417 01:16:39.592263 10804 yolov3_layer.cpp:532] noobj: 0.00321347 obj: 0.264003 iou: 0.478043 cat: 0.80798 recall: 0.502037 recall75: 0.188421 count: 21
I0417 01:16:44.686738 10804 yolov3_layer.cpp:532] noobj: 0.00148813 obj: 0.18309 iou: 0.717419 cat: 0.943621 recall: 0.986111 recall75: 0.375 count: 3
I0417 01:16:44.705237 10804 yolov3_layer.cpp:532] noobj: 0.00314259 obj: 0.233115 iou: 0.48985 cat: 0.798157 recall: 0.532856 recall75: 0.20255 count: 23
...
...
...
I0417 01:40:31.351167 10804 solver.cpp:443] Iteration 4500, Testing net (#0)
I0417 01:40:31.351199 10804 net.cpp:679] Ignoring source layer label_data_1_split
I0417 01:40:31.351378 10804 net.cpp:679] Ignoring source layer Yolov3Loss1
I0417 01:40:31.351384 10804 net.cpp:679] Ignoring source layer Yolov3Loss2
I0417 01:40:42.772285 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:40:55.371289 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:41:08.256628 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:41:20.853245 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:41:33.417235 10804 blocking_queue.cpp:50] Waiting for data
I0417 01:41:36.257005 10804 solver.cpp:253] Iteration 4500 (0.108314 iter/s, 92.3242s/10 iters), loss = 6.04756
I0417 01:41:36.257053 10804 solver.cpp:272] Train net output #0: det_loss1 = 0.192515 (* 1 = 0.192515 loss)
I0417 01:41:36.257061 10804 solver.cpp:272] Train net output #1: det_loss2 = 4.32297 (* 1 = 4.32297 loss)
I0417 01:41:36.257066 10804 sgd_solver.cpp:121] Iteration 4500, lr = 0.0005
I0417 01:41:36.821374 10804 yolov3_layer.cpp:532] noobj: 0.00194495 obj: 0.239689 iou: 0.74027 cat: 0.936015 recall: 1 recall75: 0.399359 count: 3
I0417 01:41:36.837600 10804 yolov3_layer.cpp:532] noobj: 0.0031834 obj: 0.244109 iou: 0.543412 cat: 0.828508 recall: 0.635931 recall75: 0.192784 count: 21
I0417 01:41:41.622542 10804 yolov3_layer.cpp:532] noobj: 0.00154359 obj: 0.258396 iou: 0.744503 cat: 0.949754 recall: 0.967262 recall75: 0.733333 count: 3
I0417 01:41:41.636816 10804 yolov3_layer.cpp:532] noobj: 0.00343409 obj: 0.298613 iou: 0.554002 cat: 0.798239 recall: 0.625694 recall75: 0.208962 count: 20
I0417 01:41:47.171376 10804 yolov3_layer.cpp:532] noobj: 0.00180637 obj: 0.269898 iou: 0.755353 cat: 0.959803 recall: 0.983333 recall75: 0.593175 count: 3
I0417 01:41:47.211905 10804 yolov3_layer.cpp:532] noobj: 0.00229508 obj: 0.256093 iou: 0.585642 cat: 0.781785 recall: 0.674531 recall75: 0.294409 count: 19
I0417 01:41:51.997382 10804 yolov3_layer.cpp:532] noobj: 0.00155116 obj: 0.327347 iou: 0.754532 cat: 0.949671 recall: 0.948718 recall75: 0.647436 count: 2
I0417 01:41:52.007910 10804 yolov3_layer.cpp:532] noobj: 0.00246271 obj: 0.284302 iou: 0.565202 cat: 0.847037 recall: 0.637224 recall75: 0.304283 count: 18
I0417 01:41:57.120379 10804 yolov3_layer.cpp:532] noobj: 0.00136798 obj: 0.0937484 iou: 0.688966 cat: 0.86048 recall: 0.892857 recall75: 0.270578 count: 3
I0417 01:41:57.167546 10804 yolov3_layer.cpp:532] noobj: 0.0024238 obj: 0.25775 iou: 0.517224 cat: 0.813302 recall: 0.579652 recall75: 0.226081 count: 18
I0417 01:42:03.212220 10804 yolov3_layer.cpp:532] noobj: 0.00198894 obj: 0.254665 iou: 0.740418 cat: 0.972942 recall: 0.968254 recall75: 0.50328 count: 4
I0417 01:42:03.234072 10804 yolov3_layer.cpp:532] noobj: 0.00204909 obj: 0.28225 iou: 0.534509 cat: 0.831194 recall: 0.611214 recall75: 0.24834 count: 19
I0417 01:42:05.228647 10804 solver.cpp:253] Iteration 4510 (0.345168 iter/s, 28.9714s/10 iters), loss = 5.45083
I0417 01:42:05.228718 10804 solver.cpp:272] Train net output #0: det_loss1 = 0.963693 (* 1 = 0.963693 loss)
I0417 01:42:05.228727 10804 solver.cpp:272] Train net output #1: det_loss2 = 5.47839 (* 1 = 5.47839 loss)

@eric612 博主,你好,自查了一下问题。以上是训练log,迭代4000次结果正常,eval能给出相应的detection_eval,推理时目标框结果正常。迭代到4500次忽然detection_eval显示不了,代表测试图片一张也检测不出来,然而validation loss还在下降,推理时也出不来结果,推理至conv39数据全部为nan,conv38正常,感觉很奇怪,好像哪里出现了bug

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant