diff --git a/apps/Data_driven.py b/apps/Data_driven.py index 0643f02..978d09e 100644 --- a/apps/Data_driven.py +++ b/apps/Data_driven.py @@ -165,6 +165,7 @@ options=[ {'label': 'Upload Dataset', 'value': 'Upload_data'}, {'label': 'Probes', 'value': 'probes'}, + {'label':'Airfoil Noise','value':'airfoil'} ], className="m-1", id='dataset_selection', placeholder='Select Dataset..', clearable=False,value='Upload_data'), @@ -247,7 +248,7 @@ {'label': 'Least-squares', 'value': 'least-squares'}, ], placeholder='Solver method', clearable=False, - value='numerical-integration', + value='least-squares', className="m-1", id='solver_method_data', ) @@ -431,7 +432,14 @@ def ParsedData(filename,content,data_select): data = np.hstack([data['X'], data['y2']]) cols = ['Hole ellipse', 'Hole fwd/back', 'Hole angle', 'Kiel lip', 'Kiel outer', 'Kiel inner', 'Hole diam.', 'Recovery ratio objective'] - return data,cols,['Probes'] + return data, cols, ['Probes'] + + elif data_select == 'airfoil': + df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat', + sep="\t", names=['Freq', 'AOA', 'ChordLength', 'FSV', 'Suction', 'SPL']) + cols=list(df.columns) + data=df.to_numpy() + return data,cols,['Airfoil Noise'] @app.callback( Output('upload-data-table','data'),