diff --git a/R/primary_censored_dist.R b/R/primary_censored_dist.R index a95c492..60ef7eb 100644 --- a/R/primary_censored_dist.R +++ b/R/primary_censored_dist.R @@ -284,10 +284,9 @@ primary_censored_cdf.pcens_pweibull_dunif <- function( g <- function(t) { # Use the lower incomplete gamma function scaled_t <- (t * inv_scale)^shape - gamma_1k <- vapply(scaled_t, function(x) { - pracma::gammainc(1 + inv_shape, x)["lowinc"] + vapply(scaled_t, function(x) { + pracma::gammainc(x, 1 + inv_shape)["lowinc"] }, numeric(1)) - return(gamma_1k) } # Adjust q so that we have [q-pwindow, q] @@ -308,12 +307,12 @@ primary_censored_cdf.pcens_pweibull_dunif <- function( g_q_pwindow <- g(non_zero_q + pwindow) Q_T <- 1 - pweibull_q_pwindow - Delta_g <- scale * (g_q_pwindow - g_q) + Delta_g <- (g_q_pwindow - g_q) Delta_F_T <- pweibull_q_pwindow - pweibull_q # Calculate Q_Splus using the analytical formula Q_Splus <- Q_T + - (1 / pwindow) * Delta_g - + (scale / pwindow) * Delta_g - (non_zero_q / pwindow) * Delta_F_T # Compute the CDF as 1 - Q_Splus diff --git a/tests/testthat/test-primary_censored_dist.R b/tests/testthat/test-primary_censored_dist.R index d97d258..f6717aa 100644 --- a/tests/testthat/test-primary_censored_dist.R +++ b/tests/testthat/test-primary_censored_dist.R @@ -67,7 +67,7 @@ test_that( expect_s3_class(obj_weibull, "pcens_pweibull_dunif") q_values <- c(5, 10) - pwindow <- 10 + pwindow <- 2 expect_no_error( primary_censored_cdf(obj_gamma, q = q_values, pwindow = pwindow) diff --git a/tests/testthat/test-rpd-primarycensoreddist.R b/tests/testthat/test-rpd-primarycensoreddist.R index 4d3154a..b85c97d 100644 --- a/tests/testthat/test-rpd-primarycensoreddist.R +++ b/tests/testthat/test-rpd-primarycensoreddist.R @@ -104,6 +104,8 @@ test_that( samples <- rpcens( n, rweibull, pwindow, swindow, + rprimary = rexpgrowth, + rprimary_args = list(r = 0.5), D = D, shape = shape, scale = scale ) @@ -115,6 +117,8 @@ test_that( x_values <- seq(0, D - swindow, by = swindow) pmf <- dpcens( x_values, pweibull, pwindow, swindow, + dprimary = dexpgrowth, + dprimary_args = list(r = 0.5), D = D, shape = shape, scale = scale ) theoretical_mean <- sum(x_values * pmf) @@ -132,6 +136,8 @@ test_that( empirical_cdf <- ecdf(samples)(x_values) theoretical_cdf <- ppcens( c(x_values[-1], D), pweibull, pwindow, D, + dprimary = dexpgrowth, + dprimary_args = list(r = 0.5), shape = shape, scale = scale ) expect_equal(cumsum(pmf), theoretical_cdf, tolerance = 0.01)