From b4e86435cce4ca18ef5fbd580707427d22d8f1dd Mon Sep 17 00:00:00 2001 From: Sebastian Funk Date: Thu, 14 Sep 2023 07:26:35 +0100 Subject: [PATCH] final updates --- talks/gates_20230914.html | 196 +++++++++++++++++++------------------- 1 file changed, 98 insertions(+), 98 deletions(-) diff --git a/talks/gates_20230914.html b/talks/gates_20230914.html index a229bcd..7b0a6c8 100644 --- a/talks/gates_20230914.html +++ b/talks/gates_20230914.html @@ -397,10 +397,10 @@
-
-

+
+

-
+

@@ -422,8 +422,8 @@

-
-

+
+

Can we quantify the risk of measles outbreaks (and if yes, using which data/models)?

@@ -431,10 +431,10 @@

-
-

+
+

-
+

@@ -442,10 +442,10 @@

-
-

+
+

-
+

@@ -453,8 +453,36 @@

-
-

+
+

\(R_0\) can span wide range

+ +
+

+

+
+ +
+

+Guerra et al., Lancet Inf Dis, 2017 +

+
+ +
+
+
+
+

+ +
+

+

+
+ +
+
+
+
+

How do we best estimate susceptibility?

@@ -462,8 +490,8 @@

-
-

+
+

Population-level susceptibility depends on:

@@ -482,10 +510,10 @@

-
-

+
+

-
+

@@ -493,8 +521,8 @@

-
-

Model: Vaccination → immunity

+
+

Model: Vaccination → immunity

  1. map year of report to current age (e.g., 1st dose at 1y of age in 1990, 34y old now)
  2. assume 2nd doses assumed given according to schedule and distributed randomly
  3. @@ -506,10 +534,10 @@

    Model: Vaccination → immunity

-
-

+
+

-
+

@@ -517,10 +545,10 @@

-
-

+
+

-
+

@@ -528,8 +556,8 @@

-
-

Model: Disease → immunity

+
+

Model: Disease → immunity

  1. assume cases distributed by agelike cases in the EUR region in the last 10 years Example: 10,000 cases reported in 1995 4.6% (460) in 6y olds, 25y old now
  2. @@ -540,10 +568,10 @@

    Model: Disease → immunity

-
-

+
+

-
+

@@ -551,10 +579,10 @@

-
-

Comparison to serology (ESEN2)

+
+

Comparison to serology (ESEN2)

-
+

@@ -562,8 +590,8 @@

Comparison to serology (ESEN2)

-
-

Why are the estimates so different?

+
+

Why are the estimates so different?

  1. Serology wrong
  2. Vaccination data wrong
  3. @@ -575,10 +603,10 @@

    Why are the estimates so different?

-
-

Immunity profiles vs. outbreaks

+
+

Immunity profiles vs. outbreaks

-
+

@@ -586,8 +614,8 @@

Immunity profiles vs. outbreaks

-
-

+
+

Does serology predict outbreaks?

@@ -595,8 +623,8 @@

-
-

ESEN2 seroprevalence study

+
+

ESEN2 seroprevalence study

  1. Standardised measles seroprevalence in 17 European countries + Australia, conducted 1996-2004.
  2. Combination of residual and population random sampling (Andrews, 2008, Bull World Health Organ)
  3. @@ -606,10 +634,10 @@

    ESEN2 seroprevalence study

-
-

ESEN2 vs outbreaks

+
+

ESEN2 vs outbreaks

-
+

@@ -617,27 +645,10 @@

ESEN2 vs outbreaks

-
-

\(R_0\) can span wide range

- -
-

-

-
+
+

NHANES vs outbreaks

-
-

-Guerra et al., Lancet Inf Dis, 2017 -

-
- -
-
-
-
-

NHANES vs outbreaks

- -
+

@@ -645,17 +656,17 @@

NHANES vs outbreaks

-
-

Quantifying risk in the absence of serology

+
+

Quantifying risk in the absence of serology

-
-

Which variables explain measles growth rates in France?

+
+

Which variables explain measles growth rates in France?

-
-

+

+

@@ -668,10 +679,10 @@

Which variables explain measles growth rates in France?

-
-

+
+

-
+

@@ -679,44 +690,33 @@

-
-

Challenges in quantifying outbreak risk

-

-General challenges -

+
+

Challenges in quantifying outbreak risk

+
+
    +
  • General challenges
    • Local context and data
    • Ever more fine-grained approaches needed towards elimination
    • -
    +
-
-
-
-
-

Challenges in quantifying outbreak risk

-

-Serology for quantifying susceptibility -

+
  • Serology for quantifying susceptibility
    • Representativeness
    • Scale
    • -
    +
  • -
    -
    -
    -
    -

    Challenges in quantifying outbreak risk

    -

    -Models for quantifying susceptibility -

    +
  • Models for quantifying susceptibility
    • Value, meaning and reliability of input data
    • Quantifying outbreaks in heterogeneous surveillance systems
    • +
  • + +