From b3fe534c190ad155e8635044ecec464f9cb31796 Mon Sep 17 00:00:00 2001 From: Sebastian Funk Date: Thu, 8 Feb 2024 19:44:43 +0000 Subject: [PATCH] rename simulate_infections -> forecast_infections --- NAMESPACE | 1 + NEWS.md | 5 +- R/epinow.R | 2 +- R/estimate_infections.R | 2 +- R/simulate_infections.R | 28 ++++-- R/utilities.R | 4 +- _pkgdown.yml | 4 +- inst/dev/recover-synthetic/rt.R | 2 +- man/allocate_empty.Rd | 2 +- man/epinow.Rd | 2 +- man/estimate_infections.Rd | 2 +- man/forecast_infections.Rd | 102 ++++++++++++++++++++++ man/simulate_infections.Rd | 96 ++------------------ tests/testthat/test-simulate_infections.R | 38 ++++---- 14 files changed, 168 insertions(+), 122 deletions(-) create mode 100644 man/forecast_infections.Rd diff --git a/NAMESPACE b/NAMESPACE index 3836bbb8c..2a6d95c3c 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -48,6 +48,7 @@ export(extract_CrIs) export(extract_inits) export(extract_stan_param) export(fix_dist) +export(forecast_infections) export(forecast_secondary) export(gamma_dist_def) export(generation_time_opts) diff --git a/NEWS.md b/NEWS.md index d6c62f148..c13d7edb6 100644 --- a/NEWS.md +++ b/NEWS.md @@ -6,6 +6,7 @@ * The utility function `update_list()` has been deprecated in favour of `utils::modifyList()` because it comes with an installation of R. By @jamesmbaazam in #491 and reviewed by @seabbs. * The `fixed` argument to `dist_spec` has been deprecated and replaced by a `fix_dist()` function. By @sbfnk in #503 and reviewed by @seabbs. * Updated `estimate_infections()` so that rather than imputing missing data, it now skips these data points in the likelihood. This is a breaking change as it alters the behaviour of the model when dates are missing from a time series but are known to be zero. We recommend that users check their results when updating to this version but expect this to in most cases improve performance. By @seabbs in #528 and reviewed by @sbfnk. +* `simulate_infections` has been renamed to `forecast_infections` in line with `simulate_secondary` and `forecast_secondary`. The terminology is: a forecast is done from a fit to existing data, a simulation from first principles. ## Documentation @@ -168,8 +169,8 @@ reporting delay and the generation time. These are based on an implementation in ## Deprecated features -* `simulate_cases()` and `forecast_infections()` have been deprecated and have been removed. These functions depend on `EpiSoon` which itself is archived and near equivalent functionality is available within `EpiNow2` and in other packages (@seabbs). -* Functions supporting secondary forecasting using `forecast_infections()` (i.e in `epinow()) +* `simulate_cases()` and `simulate_infections()` have been deprecated and have been removed. These functions depend on `EpiSoon` which itself is archived and near equivalent functionality is available within `EpiNow2` and in other packages (@seabbs). +* Functions supporting secondary forecasting using `simulate_infections()` (i.e in `epinow()) have been removed along with the arguments that supported them (@seabbs). * `global_map()`, `country_map()`, and `theme_map()` have all been deprecated and have been removed. These functions were used to support reporting of reproduction number estimates and are considered out of scope for `EpiNow2`. If finding useful contacting the diff --git a/R/epinow.R b/R/epinow.R index 5eefe62e9..cd2156db1 100644 --- a/R/epinow.R +++ b/R/epinow.R @@ -24,7 +24,7 @@ #' summarising results and reporting errors if they have occurred. #' @author Sam Abbott #' @export -#' @seealso [estimate_infections()] [simulate_infections()] [regional_epinow()] +#' @seealso [estimate_infections()] [forecast_infections()] [regional_epinow()] #' @inheritParams setup_target_folder #' @inheritParams estimate_infections #' @inheritParams setup_default_logging diff --git a/R/estimate_infections.R b/R/estimate_infections.R index 63a945919..8ec103d19 100644 --- a/R/estimate_infections.R +++ b/R/estimate_infections.R @@ -51,7 +51,7 @@ #' samples, data used to fit the model, and the fit object itself. #' #' @author Sam Abbott -#' @seealso [epinow()] [regional_epinow()] [simulate_infections()] +#' @seealso [epinow()] [regional_epinow()] [forecast_infections()] #' [estimate_truncation()] #' @inheritParams create_stan_args #' @inheritParams create_stan_data diff --git a/R/simulate_infections.R b/R/simulate_infections.R index 6ac8b1cb5..af917fd66 100644 --- a/R/simulate_infections.R +++ b/R/simulate_infections.R @@ -1,4 +1,22 @@ -#' Simulate infections using a given trajectory of the time-varying +#' Deprecated; use [forecast_infections()] instead +#' +#' Calling this function passes all arguments to [forecast_infections()] +#' @description `r lifecycle::badge("deprecated")` +#' @param ... Arguments to be passed to [forecast_infections()] +#' @return the result of [forecast_infections()] +#' @export +simulate_infections <- function(...) { + deprecate_warn( + "2.0.0", + "simulate_infections()", + "forecast_infections()", + "A new [simulate_infections()] function for simulating from given ", + "parameters is planned for implementation in the future." + ) + forecast_infections(...) +} + +#' Forecast infections from a given fit and trajectory of the time-varying #' reproduction number #' #' @description `r lifecycle::badge("stable")` @@ -63,7 +81,7 @@ #' #' # update Rt trajectory and simulate new infections using it #' R <- c(rep(NA_real_, 26), rep(0.5, 10), rep(0.8, 7)) -#' sims <- simulate_infections(est, R) +#' sims <- forecast_infections(est, R) #' plot(sims) #' #' # with a data.frame input of samples @@ -74,7 +92,7 @@ #' ), #' value = R #' ) -#' sims <- simulate_infections(est, R_dt) +#' sims <- forecast_infections(est, R_dt) #' plot(sims) #' #' #' # with a data.frame input of samples @@ -83,12 +101,12 @@ #' .(date, sample, value)][sample <= 1000][date <= "2020-04-10" #' ] #' R_samples <- R_samples[date >= "2020-04-01", value := 1.1] -#' sims <- simulate_infections(est, R_samples) +#' sims <- forecast_infections(est, R_samples) #' plot(sims) #' #' options(old_opts) #' } -simulate_infections <- function(estimates, +forecast_infections <- function(estimates, R = NULL, model = NULL, samples = NULL, diff --git a/R/utilities.R b/R/utilities.R index 8dfde59a0..c253a5704 100644 --- a/R/utilities.R +++ b/R/utilities.R @@ -163,7 +163,7 @@ allocate_delays <- function(delay_var, no_delays) { #' #' @description `r lifecycle::badge("stable")` #' Allocate missing parameters to be empty two dimensional arrays. Used -#' internally by [simulate_infections()]. +#' internally by [forecast_infections()]. #' @param data A list of parameters #' @param params A character vector of parameters to allocate to #' empty if missing. @@ -423,7 +423,7 @@ set_dt_single_thread <- function() { #' @importFrom stats glm median na.omit pexp pgamma plnorm quasipoisson rexp #' @importFrom lifecycle deprecate_warn -#' @importFrom stats rlnorm rnorm rpois runif sd var rgamma +#' @importFrom stats rlnorm rnorm rpois runif sd var rgamma pnorm globalVariables( c( "bottom", "cases", "confidence", "confirm", "country_code", "crps", diff --git a/_pkgdown.yml b/_pkgdown.yml index cc4ff0a49..a324e2be9 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -68,7 +68,7 @@ reference: desc: Function to estimate, simulate and forecast parameters of interest. contents: - estimate_infections - - simulate_infections + - forecast_infections - estimate_secondary - forecast_secondary - estimate_delay @@ -126,7 +126,7 @@ reference: - title: Simulate desc: Functions to help with simulating data or mapping to reported cases contents: - - simulate_infections + - forecast_infections - simulate_secondary - adjust_infection_to_report - title: Data diff --git a/inst/dev/recover-synthetic/rt.R b/inst/dev/recover-synthetic/rt.R index a447debf0..b6dce1aa1 100644 --- a/inst/dev/recover-synthetic/rt.R +++ b/inst/dev/recover-synthetic/rt.R @@ -26,7 +26,7 @@ R <- c( ) noisy_R <- R * rnorm(length(R), 1, 0.05) # update Rt trajectory and simulate new infections using it -sims <- simulate_infections(init, R = noisy_R, samples = 10) +sims <- forecast_infections(init, R = noisy_R, samples = 10) sim_R <- sims$summarised[variable == "R"]$median diff --git a/man/allocate_empty.Rd b/man/allocate_empty.Rd index 595d48f62..e269e2aac 100644 --- a/man/allocate_empty.Rd +++ b/man/allocate_empty.Rd @@ -20,5 +20,5 @@ A list of parameters some allocated to be empty \description{ \ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#stable}{\figure{lifecycle-stable.svg}{options: alt='[Stable]'}}}{\strong{[Stable]}} Allocate missing parameters to be empty two dimensional arrays. Used -internally by \code{\link[=simulate_infections]{simulate_infections()}}. +internally by \code{\link[=forecast_infections]{forecast_infections()}}. } diff --git a/man/epinow.Rd b/man/epinow.Rd index a4a302f8a..76cc6676f 100644 --- a/man/epinow.Rd +++ b/man/epinow.Rd @@ -176,7 +176,7 @@ options(old_opts) } } \seealso{ -\code{\link[=estimate_infections]{estimate_infections()}} \code{\link[=simulate_infections]{simulate_infections()}} \code{\link[=regional_epinow]{regional_epinow()}} +\code{\link[=estimate_infections]{estimate_infections()}} \code{\link[=forecast_infections]{forecast_infections()}} \code{\link[=regional_epinow]{regional_epinow()}} } \author{ Sam Abbott diff --git a/man/estimate_infections.Rd b/man/estimate_infections.Rd index 851e3a295..156a733d2 100644 --- a/man/estimate_infections.Rd +++ b/man/estimate_infections.Rd @@ -159,7 +159,7 @@ options(old_opts) } } \seealso{ -\code{\link[=epinow]{epinow()}} \code{\link[=regional_epinow]{regional_epinow()}} \code{\link[=simulate_infections]{simulate_infections()}} +\code{\link[=epinow]{epinow()}} \code{\link[=regional_epinow]{regional_epinow()}} \code{\link[=forecast_infections]{forecast_infections()}} \code{\link[=estimate_truncation]{estimate_truncation()}} } \author{ diff --git a/man/forecast_infections.Rd b/man/forecast_infections.Rd new file mode 100644 index 000000000..ec90e946c --- /dev/null +++ b/man/forecast_infections.Rd @@ -0,0 +1,102 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/simulate_infections.R +\name{forecast_infections} +\alias{forecast_infections} +\title{Forecast infections from a given fit and trajectory of the time-varying +reproduction number} +\usage{ +forecast_infections( + estimates, + R = NULL, + model = NULL, + samples = NULL, + batch_size = 10, + verbose = interactive() +) +} +\arguments{ +\item{estimates}{The \code{estimates} element of an \code{\link[=epinow]{epinow()}} run that +has been done with output = "fit", or the result of +\code{\link[=estimate_infections]{estimate_infections()}} with \code{return_fit} set to TRUE.} + +\item{R}{A numeric vector of reproduction numbers; these will overwrite the +reproduction numbers contained in \code{estimates}, except elements set to +NA. Alternatively accepts a \verb{} containing at least \code{date} and +\code{value} (integer) variables and optionally \code{sample}. More (or fewer) days +than in the original fit can be simulated.} + +\item{model}{A compiled stan model as returned by \code{\link[rstan:stan_model]{rstan::stan_model()}}.} + +\item{samples}{Numeric, number of posterior samples to simulate from. The +default is to use all samples in the \code{estimates} input.} + +\item{batch_size}{Numeric, defaults to 10. Size of batches in which to +simulate. May decrease run times due to reduced IO costs but this is still +being evaluated. If set to NULL then all simulations are done at once.} + +\item{verbose}{Logical defaults to \code{\link[=interactive]{interactive()}}. Should a progress bar +(from \code{progressr}) be shown.} +} +\value{ +A list of output as returned by \code{\link[=estimate_infections]{estimate_infections()}} but based on +results from the specified scenario rather than fitting. +} +\description{ +\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#stable}{\figure{lifecycle-stable.svg}{options: alt='[Stable]'}}}{\strong{[Stable]}} +This function simulates infections using an existing fit to observed cases +but with a modified time-varying reproduction number. This can be used to +explore forecast models or past counterfactuals. Simulations can be run in +parallel using \code{\link[future:plan]{future::plan()}}. +} +\examples{ +\donttest{ +# set number of cores to use +old_opts <- options() +options(mc.cores = ifelse(interactive(), 4, 1)) + +# get example case counts +reported_cases <- example_confirmed[1:50] + +# fit model to data to recover Rt estimates +est <- estimate_infections(reported_cases, + generation_time = generation_time_opts(example_generation_time), + delays = delay_opts(example_incubation_period + example_reporting_delay), + rt = rt_opts(prior = list(mean = 2, sd = 0.1), rw = 7), + stan = stan_opts(control = list(adapt_delta = 0.9)), + obs = obs_opts(scale = list(mean = 0.1, sd = 0.01)), + gp = NULL, horizon = 0 +) + +# update Rt trajectory and simulate new infections using it +R <- c(rep(NA_real_, 26), rep(0.5, 10), rep(0.8, 7)) +sims <- forecast_infections(est, R) +plot(sims) + +# with a data.frame input of samples +R_dt <- data.frame( + date = seq( + min(summary(est, type = "parameters", param = "R")$date), + by = "day", length.out = length(R) + ), + value = R +) +sims <- forecast_infections(est, R_dt) +plot(sims) + +#' # with a data.frame input of samples +R_samples <- summary(est, type = "samples", param = "R") +R_samples <- R_samples[, + .(date, sample, value)][sample <= 1000][date <= "2020-04-10" +] +R_samples <- R_samples[date >= "2020-04-01", value := 1.1] +sims <- forecast_infections(est, R_samples) +plot(sims) + +options(old_opts) +} +} +\seealso{ +\code{\link[=dist_spec]{dist_spec()}} \code{\link[=generation_time_opts]{generation_time_opts()}} \code{\link[=delay_opts]{delay_opts()}} \code{\link[=rt_opts]{rt_opts()}} +\code{\link[=estimate_infections]{estimate_infections()}} \code{\link[=trunc_opts]{trunc_opts()}} \code{\link[=stan_opts]{stan_opts()}} \code{\link[=obs_opts]{obs_opts()}} +\code{\link[=gp_opts]{gp_opts()}} +} diff --git a/man/simulate_infections.Rd b/man/simulate_infections.Rd index 4b3046c6e..f1f3f577d 100644 --- a/man/simulate_infections.Rd +++ b/man/simulate_infections.Rd @@ -2,101 +2,19 @@ % Please edit documentation in R/simulate_infections.R \name{simulate_infections} \alias{simulate_infections} -\title{Simulate infections using a given trajectory of the time-varying -reproduction number} +\title{Deprecated; use \code{\link[=forecast_infections]{forecast_infections()}} instead} \usage{ -simulate_infections( - estimates, - R = NULL, - model = NULL, - samples = NULL, - batch_size = 10, - verbose = interactive() -) +simulate_infections(...) } \arguments{ -\item{estimates}{The \code{estimates} element of an \code{\link[=epinow]{epinow()}} run that -has been done with output = "fit", or the result of -\code{\link[=estimate_infections]{estimate_infections()}} with \code{return_fit} set to TRUE.} - -\item{R}{A numeric vector of reproduction numbers; these will overwrite the -reproduction numbers contained in \code{estimates}, except elements set to -NA. Alternatively accepts a \verb{} containing at least \code{date} and -\code{value} (integer) variables and optionally \code{sample}. More (or fewer) days -than in the original fit can be simulated.} - -\item{model}{A compiled stan model as returned by \code{\link[rstan:stan_model]{rstan::stan_model()}}.} - -\item{samples}{Numeric, number of posterior samples to simulate from. The -default is to use all samples in the \code{estimates} input.} - -\item{batch_size}{Numeric, defaults to 10. Size of batches in which to -simulate. May decrease run times due to reduced IO costs but this is still -being evaluated. If set to NULL then all simulations are done at once.} - -\item{verbose}{Logical defaults to \code{\link[=interactive]{interactive()}}. Should a progress bar -(from \code{progressr}) be shown.} +\item{...}{Arguments to be passed to \code{\link[=forecast_infections]{forecast_infections()}}} } \value{ -A list of output as returned by \code{\link[=estimate_infections]{estimate_infections()}} but based on -results from the specified scenario rather than fitting. +the result of \code{\link[=forecast_infections]{forecast_infections()}} } \description{ -\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#stable}{\figure{lifecycle-stable.svg}{options: alt='[Stable]'}}}{\strong{[Stable]}} -This function simulates infections using an existing fit to observed cases -but with a modified time-varying reproduction number. This can be used to -explore forecast models or past counterfactuals. Simulations can be run in -parallel using \code{\link[future:plan]{future::plan()}}. +\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#deprecated}{\figure{lifecycle-deprecated.svg}{options: alt='[Deprecated]'}}}{\strong{[Deprecated]}} } -\examples{ -\donttest{ -# set number of cores to use -old_opts <- options() -options(mc.cores = ifelse(interactive(), 4, 1)) - -# get example case counts -reported_cases <- example_confirmed[1:50] - -# fit model to data to recover Rt estimates -est <- estimate_infections(reported_cases, - generation_time = generation_time_opts(example_generation_time), - delays = delay_opts(example_incubation_period + example_reporting_delay), - rt = rt_opts(prior = list(mean = 2, sd = 0.1), rw = 7), - stan = stan_opts(control = list(adapt_delta = 0.9)), - obs = obs_opts(scale = list(mean = 0.1, sd = 0.01)), - gp = NULL, horizon = 0 -) - -# update Rt trajectory and simulate new infections using it -R <- c(rep(NA_real_, 26), rep(0.5, 10), rep(0.8, 7)) -sims <- simulate_infections(est, R) -plot(sims) - -# with a data.frame input of samples -R_dt <- data.frame( - date = seq( - min(summary(est, type = "parameters", param = "R")$date), - by = "day", length.out = length(R) - ), - value = R -) -sims <- simulate_infections(est, R_dt) -plot(sims) - -#' # with a data.frame input of samples -R_samples <- summary(est, type = "samples", param = "R") -R_samples <- R_samples[, - .(date, sample, value)][sample <= 1000][date <= "2020-04-10" -] -R_samples <- R_samples[date >= "2020-04-01", value := 1.1] -sims <- simulate_infections(est, R_samples) -plot(sims) - -options(old_opts) -} -} -\seealso{ -\code{\link[=dist_spec]{dist_spec()}} \code{\link[=generation_time_opts]{generation_time_opts()}} \code{\link[=delay_opts]{delay_opts()}} \code{\link[=rt_opts]{rt_opts()}} -\code{\link[=estimate_infections]{estimate_infections()}} \code{\link[=trunc_opts]{trunc_opts()}} \code{\link[=stan_opts]{stan_opts()}} \code{\link[=obs_opts]{obs_opts()}} -\code{\link[=gp_opts]{gp_opts()}} +\details{ +Calling this function passes all arguments to \code{\link[=forecast_infections]{forecast_infections()}} } diff --git a/tests/testthat/test-simulate_infections.R b/tests/testthat/test-simulate_infections.R index dbe55e677..ae68fd2c1 100644 --- a/tests/testthat/test-simulate_infections.R +++ b/tests/testthat/test-simulate_infections.R @@ -15,57 +15,63 @@ out <- suppressWarnings(estimate_infections(reported_cases, )) -test_that("simulate_infections works to simulate a passed in estimate_infections object", { - sims <- simulate_infections(out) +test_that("forecast_infections works to simulate a passed in estimate_infections object", { + sims <- forecast_infections(out) expect_equal(names(sims), c("samples", "summarised", "observations")) }) -test_that("simulate_infections works to simulate a passed in estimate_infections object with an adjusted Rt", { +test_that("forecast_infections works to simulate a passed in estimate_infections object with an adjusted Rt", { R <- c(rep(NA_real_, 40), rep(0.5, 17)) - sims <- simulate_infections(out, R) + sims <- forecast_infections(out, R) expect_equal(names(sims), c("samples", "summarised", "observations")) expect_equal(tail(sims$summarised[variable == "R"]$median, 9), rep(0.5, 9)) }) -test_that("simulate_infections works to simulate a passed in estimate_infections object with a short adjusted Rt", { +test_that("forecast_infections works to simulate a passed in estimate_infections object with a short adjusted Rt", { R <- c(rep(NA_real_, 40), rep(0.5, 17)) - sims <- simulate_infections(out, R) + sims <- forecast_infections(out, R) expect_equal(names(sims), c("samples", "summarised", "observations")) expect_equal(tail(sims$summarised[variable == "R"]$median, 9), rep(0.5, 9)) }) -test_that("simulate_infections works to simulate a passed in estimate_infections object with a long adjusted Rt", { +test_that("forecast_infections works to simulate a passed in estimate_infections object with a long adjusted Rt", { R <- c(rep(NA_real_, 40), rep(1.2, 15), rep(0.8, 15)) - sims <- simulate_infections(out, R) - sims10 <- simulate_infections(out, R, samples = 10) + sims <- forecast_infections(out, R) + sims10 <- forecast_infections(out, R, samples = 10) expect_equal(names(sims), c("samples", "summarised", "observations")) expect_equal(tail(sims$summarised[variable == "R"]$median, 30), R[41:70]) }) test_that("simulate infections can be run with a limited number of samples", { R <- c(rep(NA_real_, 40), rep(1.2, 15), rep(0.8, 15)) - sims <- simulate_infections(out, R, samples = 10) + sims <- forecast_infections(out, R, samples = 10) expect_equal(names(sims), c("samples", "summarised", "observations")) expect_equal(tail(sims$summarised[variable == "R"]$median, 30), R[41:70]) expect_equal(max(sims$samples$sample), 10) }) test_that("simulate infections fails as expected", { - expect_error(simulate_infections()) - expect_error(simulate_infections(out[-"fit"])) + expect_error(forecast_infections()) + expect_error(forecast_infections(out[-"fit"])) }) -test_that("simulate_infections works to simulate a passed in estimate_infections object with an adjusted Rt in data frame", { +test_that("forecast_infections works to simulate a passed in estimate_infections object with an adjusted Rt in data frame", { R <- c(rep(1.4, 40), rep(0.5, 17)) R_dt <- data.frame(date = summary(out, type = "parameters", param = "R")$date, value = R) - sims_dt <- simulate_infections(out, R_dt) + sims_dt <- forecast_infections(out, R_dt) expect_equal(names(sims_dt), c("samples", "summarised", "observations")) }) -test_that("simulate_infections works to simulate a passed in estimate_infections object with samples of Rt in a data frame", { +test_that("forecast_infections works to simulate a passed in estimate_infections object with samples of Rt in a data frame", { R_samples <- summary(out, type = "samples", param = "R") R_samples <- R_samples[, .(date, sample, value)][sample <= 1000] R_samples <- R_samples[date >= "2020-04-01", value := 1.1] - sims_sample <- simulate_infections(out, R_samples) + sims_sample <- forecast_infections(out, R_samples) expect_equal(names(sims_sample), c("samples", "summarised", "observations")) }) + +test_that("simulate_infectinos is deprecated", { + expect_deprecated( + sims <- simulate_infections(out) + ) +})