diff --git a/adversarial_crypto/train_eval.py b/adversarial_crypto/train_eval.py index 570de938f4d..09de7e51305 100644 --- a/adversarial_crypto/train_eval.py +++ b/adversarial_crypto/train_eval.py @@ -128,13 +128,13 @@ def model(self, collection, message, key=None): """ if key is not None: - combined_message = tf.concat([message, key], 1) + combined_message = tf.concat(axis=1, values=[message, key]) else: combined_message = message # Ensure that all variables created are in the specified collection. with tf.contrib.framework.arg_scope( - [tf.contrib.layers.fully_connected, tf.contrib.layers.convolution2d], + [tf.contrib.layers.fully_connected, tf.contrib.layers.conv2d], variables_collections=[collection]): fc = tf.contrib.layers.fully_connected( @@ -147,13 +147,13 @@ def model(self, collection, message, key=None): # and then squeezing it back down). fc = tf.expand_dims(fc, 2) # 2,1 -> 1,2 - conv = tf.contrib.layers.convolution2d( + conv = tf.contrib.layers.conv2d( fc, 2, 2, 2, 'SAME', activation_fn=tf.nn.sigmoid) # 1,2 -> 1, 2 - conv = tf.contrib.layers.convolution2d( + conv = tf.contrib.layers.conv2d( conv, 2, 1, 1, 'SAME', activation_fn=tf.nn.sigmoid) # 1,2 -> 1, 1 - conv = tf.contrib.layers.convolution2d( + conv = tf.contrib.layers.conv2d( conv, 1, 1, 1, 'SAME', activation_fn=tf.nn.tanh) conv = tf.squeeze(conv, 2) return conv