-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
277 lines (221 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import argparse
import os
import time
import sys
import numpy as np
import librosa
import tensorflow as tf
from nnmnkwii import preprocessing as P
import utils
from models.fftnet import FFTNet
from hparams import hparams, hparams_debug_string
from models.feeder import get_dataset
from utils.plot import waveplot
from utils.window import ValueWindow
def add_stats(model):
with tf.variable_scope('train_stats'):
tf.summary.scalar('loss', model.loss)
return tf.summary.merge_all()
def add_test_stats(summary_writer, step, val_loss):
values = [
tf.Summary.Value(tag='eval_stats/val_loss', simple_value=val_loss),
]
test_summary = tf.Summary(value=values)
summary_writer.add_summary(test_summary, step)
def create_train_model(feeder, ema, hp, global_step):
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
model = FFTNet(hp)
local_condition = None if feeder[3][0].dtype.is_bool else feeder[3][0]
global_condition = None if feeder[4][0].dtype.is_bool else feeder[4][0]
model.forward(feeder[0][0], feeder[1][0], local_condition, global_condition)
model.add_loss()
model.add_optimizer(ema, global_step)
return model
def create_eval_model(feeder, hp):
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
model = FFTNet(hp)
local_condition = None if feeder[3][0].dtype.is_bool else feeder[3][0]
global_condition = None if feeder[4][0].dtype.is_bool else feeder[4][0]
random_local_condition = tf.expand_dims(local_condition[0, :, :], axis=0) if local_condition is not None else None
random_global_condition = tf.expand_dims(global_condition[0], axis=0) if global_condition is not None else None
random_target = tf.expand_dims(feeder[1][0][0, :], axis=0)
# for eval, we only use one to generate
model.predict(random_local_condition, random_global_condition, targets=random_target)
return model
def get_inputs(feeder, num_gpus):
inputs, targets, input_lengths, local_conditions, global_conditions = feeder
if num_gpus == 1:
return [[inputs], [targets], [input_lengths], [local_conditions], [global_conditions]]
tower_inputs = tf.split(inputs, num_or_size_splits=num_gpus, axis=0)
tower_targets = tf.split(targets, num_or_size_splits=num_gpus, axis=0)
tower_input_lengths = tf.split(input_lengths, num_or_size_splits=num_gpus, axis=0)
tower_local_conditions = tf.split(local_conditions, num_or_size_splits=num_gpus, axis=0)
tower_global_conditions = tf.split(global_conditions, num_or_size_splits=num_gpus, axis=0)
return [tower_inputs, tower_targets, tower_input_lengths, tower_local_conditions, tower_global_conditions]
def save_log(sess, step, model, plot_dir, audio_dir, hp):
predicts, targets = sess.run([model.log_outputs, model.targets])
y_hat = P.inv_mulaw_quantize(predicts[0], hp.quantize_channels)
y = P.inv_mulaw_quantize(targets[0], hp.quantize_channels)
pred_wav_path = os.path.join(audio_dir, 'step-{}-pred.wav'.format(step))
target_wav_path = os.path.join(audio_dir, 'step-{}-real.wav'.format(step))
plot_path = os.path.join(plot_dir, 'step-{}-waveplot.png'.format(step))
# Save audio
librosa.output.write_wav(pred_wav_path, y_hat, sr=hp.sample_rate)
librosa.output.write_wav(target_wav_path, y, sr=hp.sample_rate)
# Save figure
waveplot(plot_path, y_hat, y, hparams)
def eval_step(eval_model, sess, step, eval_plot_dir, eval_audio_dir):
start_time = time.time()
y_hat, y = sess.run([eval_model.eval_outputs, eval_model.eval_targets])
duration = time.time() - start_time
print('Time Evaluation: Generation of {} audio samples took {:.3f} sec ({:.3f} frames/sec)'.format(
len(y_hat), duration, len(y_hat) / duration))
y_hat = np.reshape(y_hat, [-1])
y = np.reshape(y, [-1])
pred_wav_path = os.path.join(eval_audio_dir, 'step-{}-pred.wav'.format(step))
target_wav_path = os.path.join(eval_audio_dir, 'step-{}-real.wav'.format(step))
plot_path = os.path.join(eval_plot_dir, 'step-{}-waveplot.png'.format(step))
# Save Audio
librosa.output.write_wav(pred_wav_path, y_hat, hparams.sample_rate)
librosa.output.write_wav(target_wav_path, y, hparams.sample_rate)
# Save figure
waveplot(plot_path, y_hat, y, hparams)
def train(log_dir, args, hp):
# create dir
os.makedirs(log_dir, exist_ok=True)
checkpoint_dir = os.path.join(log_dir, 'checkpoints')
event_dir = os.path.join(log_dir, 'events')
os.makedirs(event_dir, exist_ok=True)
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_path = os.path.join(checkpoint_dir, 'model_ckpt')
audio_dir = os.path.join(log_dir, 'train_stats', 'wavs')
plot_dir = os.path.join(log_dir, 'train_stats', 'plots')
eval_audio_dir = os.path.join(log_dir, 'eval_stats', 'wavs')
eval_plot_dir = os.path.join(log_dir, 'eval_stats', 'plots')
os.makedirs(audio_dir, exist_ok=True)
os.makedirs(plot_dir, exist_ok=True)
os.makedirs(eval_audio_dir, exist_ok=True)
os.makedirs(eval_plot_dir, exist_ok=True)
# sess config
config = tf.ConfigProto(
gpu_options=tf.GPUOptions(force_gpu_compatible=True, allow_growth=True),
allow_soft_placement=True,
log_device_placement=False,
)
# how many gpus will be used
num_gpus = len(utils.get_available_gpus(config))
controller = "/gpu:0" if num_gpus == 1 else "/cpu:0"
# create dataset and iterator
train_dataset = get_dataset(args.train_file, True, hp, batch_size=hp.batch_size * num_gpus)
val_dataset = get_dataset(args.val_file, False, hp, batch_size=hp.batch_size * num_gpus)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes)
# feeder: inputs, targets, input_lengths, local_condition, global_condition
next_inputs = iterator.get_next()
# To Do: multi gpu training
feeder = get_inputs(next_inputs, 1)
train_init = iterator.make_initializer(train_dataset)
val_init = iterator.make_initializer(val_dataset)
# global step
global_step = tf.Variable(name='global_step', initial_value=-1, trainable=False, dtype=tf.int64)
global_val_step = tf.Variable(name='global_val_step', initial_value=-1, trainable=False, dtype=tf.int64)
global_val_step_op = tf.assign_add(global_val_step, 1, name='global_val_step_add')
# apply ema to variable
ema = tf.train.ExponentialMovingAverage(decay=hp.ema_decay)
# create model
# use multi gpu to train
train_model = create_train_model(feeder, ema, hp, global_step)
eval_model = create_eval_model(feeder, hp)
# save info
saver = tf.train.Saver(max_to_keep=5)
train_stats = add_stats(train_model)
train_loss_window = ValueWindow(100)
val_loss_window = ValueWindow(100)
with tf.Session(config=config) as sess:
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(event_dir, sess.graph)
# restore from checkpoint
if args.restore_step is not None:
restore_path = '{}-{}'.format(checkpoint_path, args.restore_step)
# we don't load the ema to continue training, that is just for evaluating
saver.restore(sess, restore_path)
print('Resuming from checkpoint: {}...'.format(args.restore_step))
else:
print('Start new training....')
for epoch in range(args.epochs):
sess.run(train_init)
while True:
try:
start_time = time.time()
step, loss, _, = sess.run([global_step, train_model.loss, train_model.optimize])
train_loss_window.append(loss)
if step % 10 == 0:
message = 'Epoch {:4d} Train Step {:7d} [{:.3f} sec/step step_loss={:.5f} avg_loss={:.5f}]'.format(
epoch, step, time.time() - start_time, loss, train_loss_window.average)
print(message)
if step % args.checkpoint_interval == 0:
saver.save(sess, checkpoint_path, step)
save_log(sess, step, train_model, plot_dir, audio_dir, hp)
if step % args.summary_interval == 0:
print('Writing summary at step {}'.format(step))
summary_writer.add_summary(sess.run(train_stats), step)
sys.stdout.flush()
except tf.errors.OutOfRangeError:
break
sess.run(val_init)
while True:
try:
start_time = time.time()
loss = sess.run(train_model.loss)
val_loss_window.append(loss)
step = sess.run(global_val_step_op)
message = 'Epoch {:4d} Val Step {:7d} [{:.3f} sec/step step_loss={:.5f} avg_loss={:.5f}]'.format(
epoch, step, time.time() - start_time, loss, val_loss_window.average)
print(message)
if step % args.eval_interval == 0:
eval_step(eval_model, sess, step, eval_plot_dir, eval_audio_dir)
if step % args.summary_val_interval == 0:
add_test_stats(summary_writer, step, loss)
sys.stdout.flush()
except tf.errors.OutOfRangeError:
break
def prepare_run(args):
modified_hp = hparams.parse(args.hparams)
print(hparams_debug_string())
os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(args.tf_log_level)
run_name = args.name or args.model
log_dir = os.path.join(args.base_dir, 'logs-{}'.format(run_name))
os.makedirs(log_dir, exist_ok=True)
return log_dir, modified_hp
def main():
parser = argparse.ArgumentParser(description='Train FFTNet')
parser.add_argument('--base_dir', default='')
parser.add_argument('--hparams', default='',
help='Hyper parameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--train_file', default='training_data/train.txt')
parser.add_argument('--val_file', default='training_data/val.txt')
parser.add_argument('--name', help='Name of logging directory.')
parser.add_argument('--model', default='fftnet')
parser.add_argument('--preset', default=None, type=str, help='the preset config json file')
parser.add_argument('--output_dir', default='output/', help='folder to contain synthesized mel spectrograms')
parser.add_argument('--restore_step', default=None, type=int, help='the restore step')
parser.add_argument('--summary_interval', type=int, default=200,
help='Steps between running summary ops')
parser.add_argument('--summary_val_interval', type=int, default=10,
help='Steps between running summary ops')
parser.add_argument('--eval_interval', type=int, default=100,
help='Steps between train eval ops')
parser.add_argument('--checkpoint_interval', type=int, default=2000,
help='Steps between writing checkpoints')
parser.add_argument('--epochs', type=int, default=2000,
help='total number of tacotron training steps')
parser.add_argument('--tf_log_level', type=int, default=2, help='TensorFlow C++ log level.')
args = parser.parse_args()
# load preset config, so u don't need to change anything in the hparams
if args.preset is not None:
with open(args.preset) as f:
hparams.parse_json(f.read())
log_dir, hp = prepare_run(args)
train(log_dir, args, hp)
if __name__ == "__main__":
main()