forked from NovelAI/novelai-aspect-ratio-bucketing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bucketmanager.py
267 lines (244 loc) · 11.2 KB
/
bucketmanager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Released under MIT license
# Copyright (c) 2022 finetuneanon (NovelAI/Anlatan LLC)
import numpy as np
import pickle
import time
def get_prng(seed):
return np.random.RandomState(seed)
class BucketManager:
def __init__(self, bucket_file, valid_ids=None, max_size=(768,512), divisible=64, step_size=8, min_dim=256, base_res=(512,512), bsz=1, world_size=1, global_rank=0, max_ar_error=4, seed=42, dim_limit=1024, debug=False):
with open(bucket_file, "rb") as fh:
self.res_map = pickle.load(fh)
if valid_ids is not None:
new_res_map = {}
valid_ids = set(valid_ids)
for k, v in self.res_map.items():
if k in valid_ids:
new_res_map[k] = v
self.res_map = new_res_map
self.max_size = max_size
self.f = 8
self.max_tokens = (max_size[0]/self.f) * (max_size[1]/self.f)
self.div = divisible
self.min_dim = min_dim
self.dim_limit = dim_limit
self.base_res = base_res
self.bsz = bsz
self.world_size = world_size
self.global_rank = global_rank
self.max_ar_error = max_ar_error
self.prng = get_prng(seed)
epoch_seed = self.prng.tomaxint() % (2**32-1)
self.epoch_prng = get_prng(epoch_seed) # separate prng for sharding use for increased thread resilience
self.epoch = None
self.left_over = None
self.batch_total = None
self.batch_delivered = None
self.debug = debug
self.gen_buckets()
self.assign_buckets()
self.start_epoch()
def gen_buckets(self):
if self.debug:
timer = time.perf_counter()
resolutions = []
aspects = []
w = self.min_dim
while (w/self.f) * (self.min_dim/self.f) <= self.max_tokens and w <= self.dim_limit:
h = self.min_dim
got_base = False
while (w/self.f) * ((h+self.div)/self.f) <= self.max_tokens and (h+self.div) <= self.dim_limit:
if w == self.base_res[0] and h == self.base_res[1]:
got_base = True
h += self.div
if (w != self.base_res[0] or h != self.base_res[1]) and got_base:
resolutions.append(self.base_res)
aspects.append(1)
resolutions.append((w, h))
aspects.append(float(w)/float(h))
w += self.div
h = self.min_dim
while (h/self.f) * (self.min_dim/self.f) <= self.max_tokens and h <= self.dim_limit:
w = self.min_dim
got_base = False
while (h/self.f) * ((w+self.div)/self.f) <= self.max_tokens and (w+self.div) <= self.dim_limit:
if w == self.base_res[0] and h == self.base_res[1]:
got_base = True
w += self.div
resolutions.append((w, h))
aspects.append(float(w)/float(h))
h += self.div
res_map = {}
for i, res in enumerate(resolutions):
res_map[res] = aspects[i]
self.resolutions = sorted(res_map.keys(), key=lambda x: x[0] * 4096 - x[1])
self.aspects = np.array(list(map(lambda x: res_map[x], self.resolutions)))
self.resolutions = np.array(self.resolutions)
if self.debug:
timer = time.perf_counter() - timer
print(f"resolutions:\n{self.resolutions}")
print(f"aspects:\n{self.aspects}")
print(f"gen_buckets: {timer:.5f}s")
def assign_buckets(self):
if self.debug:
timer = time.perf_counter()
self.buckets = {}
self.aspect_errors = []
skipped = 0
skip_list = []
for post_id in self.res_map.keys():
w, h = self.res_map[post_id]
aspect = float(w)/float(h)
bucket_id = np.abs(self.aspects - aspect).argmin()
if bucket_id not in self.buckets:
self.buckets[bucket_id] = []
error = abs(self.aspects[bucket_id] - aspect)
if error < self.max_ar_error:
self.buckets[bucket_id].append(post_id)
if self.debug:
self.aspect_errors.append(error)
else:
skipped += 1
skip_list.append(post_id)
for post_id in skip_list:
del self.res_map[post_id]
if self.debug:
timer = time.perf_counter() - timer
self.aspect_errors = np.array(self.aspect_errors)
print(f"skipped images: {skipped}")
print(f"aspect error: mean {self.aspect_errors.mean()}, median {np.median(self.aspect_errors)}, max {self.aspect_errors.max()}")
for bucket_id in reversed(sorted(self.buckets.keys(), key=lambda b: len(self.buckets[b]))):
print(f"bucket {bucket_id}: {self.resolutions[bucket_id]}, aspect {self.aspects[bucket_id]:.5f}, entries {len(self.buckets[bucket_id])}")
print(f"assign_buckets: {timer:.5f}s")
def start_epoch(self, world_size=None, global_rank=None):
if self.debug:
timer = time.perf_counter()
if world_size is not None:
self.world_size = world_size
if global_rank is not None:
self.global_rank = global_rank
# select ids for this epoch/rank
index = np.array(sorted(list(self.res_map.keys())))
index_len = index.shape[0]
index = self.epoch_prng.permutation(index)
index = index[:index_len - (index_len % (self.bsz * self.world_size))]
#print("perm", self.global_rank, index[0:16])
index = index[self.global_rank::self.world_size]
self.batch_total = index.shape[0] // self.bsz
assert(index.shape[0] % self.bsz == 0)
index = set(index)
self.epoch = {}
self.left_over = []
self.batch_delivered = 0
for bucket_id in sorted(self.buckets.keys()):
if len(self.buckets[bucket_id]) > 0:
self.epoch[bucket_id] = np.array([post_id for post_id in self.buckets[bucket_id] if post_id in index], dtype=np.int64)
self.prng.shuffle(self.epoch[bucket_id])
self.epoch[bucket_id] = list(self.epoch[bucket_id])
overhang = len(self.epoch[bucket_id]) % self.bsz
if overhang != 0:
self.left_over.extend(self.epoch[bucket_id][:overhang])
self.epoch[bucket_id] = self.epoch[bucket_id][overhang:]
if len(self.epoch[bucket_id]) == 0:
del self.epoch[bucket_id]
if self.debug:
timer = time.perf_counter() - timer
count = 0
for bucket_id in self.epoch.keys():
count += len(self.epoch[bucket_id])
print(f"correct item count: {count == len(index)} ({count} of {len(index)})")
print(f"start_epoch: {timer:.5f}s")
def get_batch(self):
if self.debug:
timer = time.perf_counter()
# check if no data left or no epoch initialized
if self.epoch is None or self.left_over is None or (len(self.left_over) == 0 and not bool(self.epoch)) or self.batch_total == self.batch_delivered:
self.start_epoch()
found_batch = False
batch_data = None
resolution = self.base_res
while not found_batch:
bucket_ids = list(self.epoch.keys())
if len(self.left_over) >= self.bsz:
bucket_probs = [len(self.left_over)] + [len(self.epoch[bucket_id]) for bucket_id in bucket_ids]
bucket_ids = [-1] + bucket_ids
else:
bucket_probs = [len(self.epoch[bucket_id]) for bucket_id in bucket_ids]
bucket_probs = np.array(bucket_probs, dtype=np.float32)
bucket_lens = bucket_probs
bucket_probs = bucket_probs / bucket_probs.sum()
bucket_ids = np.array(bucket_ids, dtype=np.int64)
if bool(self.epoch):
chosen_id = int(self.prng.choice(bucket_ids, 1, p=bucket_probs)[0])
else:
chosen_id = -1
if chosen_id == -1:
# using leftover images that couldn't make it into a bucketed batch and returning them for use with basic square image
self.prng.shuffle(self.left_over)
batch_data = self.left_over[:self.bsz]
self.left_over = self.left_over[self.bsz:]
found_batch = True
else:
if len(self.epoch[chosen_id]) >= self.bsz:
# return bucket batch and resolution
batch_data = self.epoch[chosen_id][:self.bsz]
self.epoch[chosen_id] = self.epoch[chosen_id][self.bsz:]
resolution = tuple(self.resolutions[chosen_id])
found_batch = True
if len(self.epoch[chosen_id]) == 0:
del self.epoch[chosen_id]
else:
# can't make a batch from this, not enough images. move them to leftovers and try again
self.left_over.extend(self.epoch[chosen_id])
del self.epoch[chosen_id]
assert(found_batch or len(self.left_over) >= self.bsz or bool(self.epoch))
if self.debug:
timer = time.perf_counter() - timer
print(f"bucket probs: " + ", ".join(map(lambda x: f"{x:.2f}", list(bucket_probs*100))))
print(f"chosen id: {chosen_id}")
print(f"batch data: {batch_data}")
print(f"resolution: {resolution}")
print(f"get_batch: {timer:.5f}s")
self.batch_delivered += 1
return (batch_data, resolution)
def generator(self):
if self.batch_delivered >= self.batch_total:
self.start_epoch()
while self.batch_delivered < self.batch_total:
yield self.get_batch()
if __name__ == "__main__":
# prepare a pickle with mapping of dataset IDs to resolutions called resolutions.pkl to use this
with open("resolutions.pkl", "rb") as fh:
ids = list(pickle.load(fh).keys())
counts = np.zeros((len(ids),)).astype(np.int64)
id_map = {}
for i, post_id in enumerate(ids):
id_map[post_id] = i
bm = BucketManager("resolutions.pkl", debug=True, bsz=8, world_size=8, global_rank=3)
print("got: " + str(bm.get_batch()))
print("got: " + str(bm.get_batch()))
print("got: " + str(bm.get_batch()))
print("got: " + str(bm.get_batch()))
print("got: " + str(bm.get_batch()))
print("got: " + str(bm.get_batch()))
print("got: " + str(bm.get_batch()))
bm = BucketManager("resolutions.pkl", bsz=8, world_size=1, global_rank=0, valid_ids=ids[0:16])
for _ in range(16):
bm.get_batch()
print("got from future epoch: " + str(bm.get_batch()))
bms = []
for rank in range(16):
bm = BucketManager("resolutions.pkl", bsz=8, world_size=16, global_rank=rank)
bms.append(bm)
for epoch in range(5):
print(f"epoch {epoch}")
for i, bm in enumerate(bms):
print(f"bm {i}")
first = True
for ids, res in bm.generator():
if first and i == 0:
#print(ids)
first = False
for post_id in ids:
counts[id_map[post_id]] += 1
print(np.bincount(counts))