-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
617 lines (559 loc) · 34.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# -*- coding: utf-8 -*-
import os
import sys
import time
import numpy as np
import models
from keras.utils import generic_utils
import general_utils
from data_utils import *
from image_history_buffer import *
from IPython import display
from models import *
from additional_models import *
from collections import deque
from ImageDataGenerator import *
from time import sleep
class _GAN:
def __init__(self, gen, disc, disc_entropy,DCGAN,GenClass,classificator, batch_size, img_source_dim,
img_dest_dim, noise_dim, noise_scale, lr_D, lr_G, deterministic, inject_noise, model, lsmooth,
img_buffer, datagen, disc_type, data_aug, n_classes, disc_iters,name, dir ):
self.generator_model = gen
self.discriminator_model = disc
self.discriminator2 = disc_entropy
self.DCGAN_model = DCGAN
self.GenClass_model = GenClass
self.classificator_model = classificator
self.batch_size = batch_size
self.img_source_dim = img_source_dim
self.img_dest_dim = img_dest_dim
self.bn_mode = 2
self.noise_dim = noise_dim
self.noise_scale = noise_scale
self.lr_D = lr_D
self.lr_G = lr_G
self.deterministic = deterministic
self.inject_noise = inject_noise
self.img_buffer = img_buffer
self.datagen = datagen
self.model = model
self.lsmooth = lsmooth
self.disc_type = disc_type
self.dir=dir
self.disc_iters=disc_iters
self.data_aug = data_aug
self.img_dim = img_dest_dim
self.n_classes = n_classes
self.name = name
def load_data(img_dim, image_dim_ordering, dset):
# Load and normalize data
if dset == "mnistM":
X_source_train, Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(
img_dim, image_dim_ordering, dset='mnist')
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(
img_dim, image_dim_ordering, dset='mnistM')
elif dset == "svhn_to_mnist":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist')
elif dset == "svhn_to_mnist32":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn32')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist32')
elif dset == "svhn_to_mnist32gray":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn32gray')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist32')
elif dset == "mnist_to_svhn32gray":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist32')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn32gray')
elif dset == "mnist_to_svhn32":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist32')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn32')
elif dset == "mnist_to_usps":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='usps')
elif dset == "usps_to_mnist":
X_source_train,Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(img_dim, image_dim_ordering,dset='usps')
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist')
elif dset == "MnistMtoMnist":
X_source_train, Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(
img_dim, image_dim_ordering, dset='mnist')
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(
img_dim, image_dim_ordering, dset='mnistM')
elif dset == "OfficeAmazonToDslr":
X_source_train, Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(
img_dim, image_dim_ordering, dset='OfficeAmazon')
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(
img_dim, image_dim_ordering, dset='OfficeDslr')
elif dset == "OfficeAmazonToWebcam":
X_source_train, Y_source_train, X_source_test, Y_source_test, n_classes1 = load_image_dataset(
img_dim, image_dim_ordering, dset='OfficeAmazon')
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(
img_dim, image_dim_ordering, dset='OfficeWebcam')
else:
print "dataset not supported"
if n_classes1 != n_classes2: # sanity check
print "number of classes mismatch between source and dest domains"
n_classes = n_classes1
img_source_dim = X_source_train.shape[-3:] # is it backend agnostic?
img_dest_dim = X_dest_train.shape[-3:]
if (dset == "mnist_to_usps") or (dset == "usps_to_mnist"):
X_source=X_source_train
Y_source=Y_source_train
X_dest=X_dest_train
Y_dest=Y_dest_train
else:
X_dest = np.concatenate([X_dest_train, X_dest_test], axis=0)
Y_dest = np.concatenate([Y_dest_train, Y_dest_test], axis=0)
X_source = np.concatenate([X_source_train, X_source_test], axis=0)
Y_source = np.concatenate([Y_source_train, Y_source_test], axis=0)
return X_source, Y_source, X_dest, Y_dest, n_classes, img_source_dim, img_dest_dim
def load_testset(img_dim, image_dim_ordering, dset):
# Load and normalize data
if dset == "mnistM":
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(
img_dim, image_dim_ordering, dset='mnistM')
elif dset == "svhn_to_mnist32":
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist32')
elif dset == "svhn_to_mnist32gray":
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='mnist32')
elif dset == "mnist_to_svhn32gray":
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn32gray')
elif dset == "mnist_to_svhn32":
X_dest_train,Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering,dset='svhn32')
elif dset == "OfficeAmazonToDslr":
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering, dset='OfficeDslr')
elif dset == "OfficeAmazonToWebcam":
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering, dset='OfficeWebcam')
elif dset == "usps_to_mnist":
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering, dset='mnist')
elif dset == "mnist_to_usps":
X_dest_train, Y_dest_train, X_dest_test, Y_dest_test, n_classes2 = load_image_dataset(img_dim, image_dim_ordering, dset='usps')
else:
print "dataset not supported in load_testset function!"
test_data=X_dest_test
test_labels=Y_dest_test
return test_data, test_labels
def build_opt(opt_D, opt_G, lr_D, lr_G,lr_rec=None,opt_rec=None):
_opt_D = get_optimizer(opt_D, lr_D)
_opt_G = get_optimizer(opt_G, lr_G)
_opt_C = get_optimizer('SGD', 0.01)
_opt_Z = get_optimizer('Adam', lr_G)
if opt_rec is None:
return _opt_D, _opt_G, _opt_C, _opt_Z
else:
_opt_rec = get_optimizer(opt_rec, lr_rec)
return _opt_D, _opt_G, _opt_C, _opt_Z, _opt_rec
def load_compile_reconstructions(generator_model1, generator_model2,noise_dim,img_source_dim1,img_source_dim2,opt_G, opt_rec, classificator_model2=None):
rec1 = models.reconstructor(generator_model1, generator_model2, noise_dim, img_source_dim1)
rec2 = models.reconstructor(generator_model2, generator_model1, noise_dim, img_source_dim2)
rec1.compile(loss='mse', optimizer=opt_rec)
rec2.compile(loss='mse', optimizer=opt_rec)
if classificator_model2 is not None:
models.make_trainable(generator_model1, False) #because generator_model1 is already trained by a classificator in a supervised setting
models.make_trainable(generator_model2, True)
models.make_trainable(classificator_model2, True)
recClass = models.reconstructorClass(generator_model1, generator_model2, classificator_model2, noise_dim, img_source_dim1)
recClass.compile(loss='categorical_crossentropy', optimizer=opt_rec)
return rec1,rec2,recClass
else:
return rec1,rec2
def load_compile_models(noise_dim, img_source_dim, img_dest_dim, deterministic, pureGAN, wd, loss1, loss2, disc_type, n_classes, opt_D, opt_G, opt_C, opt_Z,suffix=None,pretrained=False):
# LOAD MODELS:
generator_model = models.generator_google_mnistM(
noise_dim, img_source_dim, img_dest_dim, deterministic, pureGAN, wd,suffix)
discriminator_model,discriminator2 = models.discriminator_dcgan_doubled(img_dest_dim, wd,n_classes,disc_type)
# classificator_model = models.classificator_svhn(img_dest_dim, n_classes, wd)
if pretrained:
classificator_model = models.resnet50classifier(img_dest_dim, n_classes, wd)
else:
classificator_model = models.classificator_google_mnistM(img_dest_dim, n_classes, wd)
DCGAN_model = models.DCGAN_naive(generator_model, discriminator_model, noise_dim, img_source_dim)
GenClass_model = models.DCGAN_naive2(generator_model, classificator_model, noise_dim, img_source_dim)
if not deterministic:
zclass_model = z_coerence(generator_model, img_source_dim, bn_mode=2, wd=wd,
inject_noise=False, n_classes=n_classes, noise_dim=noise_dim, model_name="zClass")
# COMPILE MODELS:
generator_model.compile(loss=loss1, optimizer=opt_G)
models.make_trainable(discriminator_model, False)
models.make_trainable(discriminator2, False)
models.make_trainable(classificator_model, False)
if disc_type == "simple_disc":
DCGAN_model.compile(loss=[loss1], optimizer=opt_G)
models.make_trainable(discriminator_model, True)
discriminator_model.compile(loss=[loss1], optimizer=opt_D)
elif disc_type == "nclass_disc":
DCGAN_model.compile(loss=loss1, optimizer=opt_G)
GenClass_model.compile(loss=['categorical_crossentropy'], optimizer=opt_G)
models.make_trainable(discriminator_model, True)
models.make_trainable(discriminator2, True)
discriminator_model.compile(loss=loss1, optimizer=opt_D)
discriminator2.compile(loss=loss2, optimizer=opt_D)
models.make_trainable(classificator_model, True)
classificator_model.compile(loss=loss2, metrics=['accuracy'], optimizer=opt_C)
if not deterministic:
zclass_model.compile(loss=[loss1], optimizer=opt_Z)
return generator_model, discriminator_model,discriminator2, classificator_model, DCGAN_model,GenClass_model, zclass_model
else:
return generator_model, discriminator_model,discriminator2, classificator_model, DCGAN_model,GenClass_model, None
def load_pretrained_weights(generator_model, discriminator_model,discriminator2, DCGAN_model, name, data, labels, noise_scale, classificator_model=None, resume=False):
if resume: # loading previous saved model weights and checking actual performance
load_model_weights(generator_model, discriminator_model, DCGAN_model, name, classificator_model, discriminator2=discriminator2)
#loss4, acc4 = classificator_model.evaluate(data, labels, batch_size=512, verbose=0)
#print('\n Classifier Accuracy on full target domain: %.2f%%' % (100 * acc4))
def load_buffer_and_augmentation(history_size, batch_size, img_source_dim, n_classes):
max_history_size = int(history_size * batch_size)
img_buffer = ImageHistoryBuffer(
(0,) + img_source_dim, max_history_size, batch_size, n_classes)
datagen = ImageDataGenerator(rotation_range=0.45,
width_shift_range=0.1,
height_shift_range=0.1,
fill_mode='nearest')
# datagen = ImageDataGenerator(elastic_distortion=True)
return img_buffer, datagen
def get_loss_list():
list_disc_loss_real = deque(10 * [0], 10)
list_disc_loss_gen = deque(10 * [0], 10)
list_gen_loss = deque(10 * [0], 10)
list_zclass_loss = deque(10 * [0], 10)
list_classifier_loss = deque(10 * [0], 10)
list_GenClass_loss = deque(10 * [0], 10)
l_rec = deque(10 * [0], 10)
l_recClass = deque(10 * [0], 10)
return list_disc_loss_real, list_disc_loss_gen, list_gen_loss, list_zclass_loss, list_classifier_loss, l_rec, list_GenClass_loss, l_recClass
def get_batch(A_data, A_labels, B_data, B_labels, batch_size):
A_data_batch, A_labels_batch, _ = next(gen_batch(A_data, A_labels, batch_size))
B_data_batch, B_labels_batch, _ = next(gen_batch(B_data, B_labels, batch_size))
return A_data_batch, A_labels_batch, B_data_batch, B_labels_batch
def train_gan(GAN, disc_iters, A_data, A_labels, B_data, B_labels, batch_counter, l_disc_real, l_disc_gen, l_gen,l_GenClass,class_weight):
if GAN.dir == 'BtoA':
for disc_it in range(disc_iters):
A_data_batch, A_labels_batch, B_data_batch, B_labels_batch = get_batch(A_data, A_labels, B_data, B_labels, GAN.batch_size)
X_source_batch = B_data_batch
#Y_source_batch = B_labels_batch
X_dest_batch = A_data_batch
Y_dest_batch = A_labels_batch
##########
# Create a batch to feed the discriminator model
#########
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
gen_output = GAN.generator_model.predict([X_noise,X_source_batch])
#X_disc_real, X_disc_gen = get_disc_batch(X_dest_batch, GAN.generator_model, batch_counter, GAN.batch_size,
# GAN.noise_dim, X_source_batch, noise_scale=GAN.noise_scale)
if GAN.disc_type == "simple_disc":
current_labels_real = np.ones(GAN.batch_size)
current_labels_gen = np.zeros(GAN.batch_size)
if GAN.disc_type == ("nclass_disc"):
current_labels_real = np.ones(GAN.batch_size)
current_labels_gen = np.zeros(GAN.batch_size)
##############
# Train the disc on gen-buffered samples and on current real samples
##############
disc_loss_real = GAN.discriminator_model.train_on_batch(X_dest_batch, current_labels_real)
GAN.img_buffer.add_to_buffer(gen_output, current_labels_gen, GAN.batch_size)
bufferImages, bufferLabels = GAN.img_buffer.get_from_buffer(GAN.batch_size)
disc_loss_gen = GAN.discriminator_model.train_on_batch(bufferImages, bufferLabels)
disc2_loss = GAN.discriminator2.train_on_batch(X_dest_batch,Y_dest_batch * 1.0) #GAN.lsmooth) #training the discriminator_classifier model
l_disc_real.appendleft(disc_loss_real)
l_disc_gen.appendleft(disc_loss_gen)
#Train the GENERATOR, it is the same on both AtoB and BtoA:
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
if GAN.disc_type == "simple_disc":
gen_loss = GAN.DCGAN_model.train_on_batch([X_noise,X_source_batch], np.ones(GAN.batch_size))
elif GAN.disc_type == "nclass_disc":
gen_loss = GAN.DCGAN_model.train_on_batch([X_noise,X_source_batch], np.ones(GAN.batch_size))
class_p = GAN.GenClass_model.predict([X_noise,X_source_batch]) #AUTOLABELLING
idx = np.argmax(class_p, axis=1) #
virtual_labels = (idx[:, None]) == np.arange(GAN.n_classes) * 1.0 #
GenClass_loss = GAN.GenClass_model.train_on_batch([X_noise,X_source_batch], virtual_labels) #
l_GenClass.appendleft(GenClass_loss) #
l_gen.appendleft(gen_loss)
elif GAN.dir == 'AtoB':
for disc_it in range(disc_iters):
A_data_batch, A_labels_batch, B_data_batch, B_labels_batch = get_batch(A_data, A_labels, B_data, B_labels, GAN.batch_size)
X_source_batch = A_data_batch
Y_source_batch = A_labels_batch
X_dest_batch = B_data_batch
#Y_dest_batch = B_labels_batch
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
gen_output = GAN.generator_model.predict([X_noise,X_source_batch])
#X_disc_real, X_disc_gen = get_disc_batch(X_dest_batch, GAN.generator_model, batch_counter, GAN.batch_size,
# GAN.noise_dim, X_source_batch, noise_scale=GAN.noise_scale)
if GAN.disc_type == "simple_disc":
current_labels_real = np.ones(GAN.batch_size)
current_labels_gen = np.zeros(GAN.batch_size)
if GAN.disc_type == ("nclass_disc"):
current_labels_real = np.ones(GAN.batch_size)
current_labels_gen = np.zeros(GAN.batch_size)
##############
#Train the disc on gen-buffered samples and on current real samples
##############
disc_loss_real = GAN.discriminator_model.train_on_batch(X_dest_batch, current_labels_real)
GAN.img_buffer.add_to_buffer(gen_output,current_labels_gen, GAN.batch_size)
bufferImages, bufferLabels = GAN.img_buffer.get_from_buffer(GAN.batch_size)
disc_loss_gen = GAN.discriminator_model.train_on_batch(bufferImages, bufferLabels)
disc2_loss = GAN.discriminator2.train_on_batch(gen_output,Y_source_batch * 1.0) #GAN.lsmooth) #training the discriminator_classifier model
l_disc_real.appendleft(disc_loss_real)
l_disc_gen.appendleft(disc_loss_gen)
#Train the GENERATOR, it is the same on both AtoB and BtoA:
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
if GAN.disc_type == "simple_disc":
gen_loss = GAN.DCGAN_model.train_on_batch([X_noise,X_source_batch], np.ones(GAN.batch_size)) #TRYING SAME BATCH OF DISC
elif GAN.disc_type == "nclass_disc":
gen_loss = GAN.DCGAN_model.train_on_batch([X_noise,X_source_batch], np.ones(GAN.batch_size)) #TRYING SAME BATCH OF DISC
GenClass_loss = GAN.GenClass_model.train_on_batch([X_noise,X_source_batch], Y_source_batch,sample_weight=np.ones(GAN.batch_size)*class_weight)
#gen_loss = gen_loss[0]
l_gen.appendleft(gen_loss)
l_GenClass.appendleft(GenClass_loss)
return A_data_batch, A_labels_batch, B_data_batch, B_labels_batch
def train_class(GAN, l_class, A_data_batch, A_labels_batch):
if GAN.dir == 'AtoB':
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
if GAN.data_aug:
x_dest_batch = GAN.generator_model.predict([X_noise,datagen.output(A_data_batch)])
else:
x_dest_batch = GAN.generator_model.predict([X_noise,A_data_batch])
# NO LABEL SMOOTHING!!!! inverted training w.r.t. to AtoB, because I
# have labels of A
class_loss = GAN.classificator_model.train_on_batch(x_dest_batch, A_labels_batch)
elif GAN.dir == 'BtoA':
class_loss = GAN.classificator_model.train_on_batch(A_data_batch, A_labels_batch)
l_class.appendleft(class_loss[0])
return l_class
def train_rec(GAN,rec1, rec2, A_data_batch, B_data_batch, l_rec1, l_rec2,rec_weight):
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
X_noise2 = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
rec_loss = rec1.train_on_batch([X_noise, A_data_batch,X_noise2],A_data_batch,sample_weight=np.ones(GAN.batch_size)*rec_weight)
rec_loss2 = rec2.train_on_batch([X_noise, B_data_batch,X_noise2],B_data_batch,sample_weight=np.ones(GAN.batch_size)*rec_weight)
l_rec1.appendleft(rec_loss)
l_rec2.appendleft(rec_loss2)
return l_rec1, l_rec2
def train_recClass(GAN,recClass, A_data_batch, A_labels_batch, l_recClass, rec_weight):
X_noise = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
X_noise2 = sample_noise(GAN.noise_scale, GAN.batch_size, GAN.noise_dim)
recClass_loss = recClass.train_on_batch([X_noise, A_data_batch,X_noise2],A_labels_batch,sample_weight=np.ones(GAN.batch_size)*rec_weight)
l_recClass.appendleft(recClass_loss)
return l_recClass
def train_gen_zclass(generator_model, DCGAN_model, zclass_model, disc_type, deterministic, noise_dim, noise_scale, batch_size, l_gen, l_zclass, X_source, Y_source, n_classes):
X_gen = sample_noise(noise_scale, batch_size, noise_dim)
X_source_batch2, Y_source_batch2, idx_source_batch2 = next(
gen_batch(X_source, Y_source, batch_size))
if disc_type == "simple_disc":
gen_loss = DCGAN_model.train_on_batch([X_gen, X_source_batch2], np.ones(X_gen.shape[0])) # TRYING SAME BATCH OF DISC
elif disc_type == ("nclass_disc"):
#(disc_p, class_p) = DCGAN_model.predict_on_batch(X_source_batch2)
#idx = np.argmax(class_p, axis=1)
#virtual_labels = (idx[:, None] == np.arange(n_classes)) * 1
virtual_labels = np.zeros([GAN.batch_size, GAN.n_classes])
gen_loss = DCGAN_model.train_on_batch([X_gen, X_source_batch2], [np.ones(X_gen.shape[0]), virtual_labels]) # FIX :((
#gen_loss = gen_loss[0]
l_gen.appendleft(gen_loss)
if not deterministic:
zclass_loss = zclass_model.train_on_batch(
[X_gen, X_source_batch2], [X_gen])
else:
zclass_loss = 0.0
l_zclass.appendleft(zclass_loss)
return l_gen, l_zclass
def visualize_save_stuffs(GANs, progbar, gen_iterations, batch_counter, n_batch_per_epoch, l_disc_real1, l_disc_gen1, l_gen_loss1,
l_class_loss1, l_disc_real2, l_disc_gen2, l_gen_loss2,l_class_loss2, A_data, A_labels, B_data, B_labels,
start,e, l_rec1, l_rec2,l_GenClass1, l_GenClass2, l_recClass):
gen_iterations += 1
batch_counter += 1
image_dim_ordering = 'th'
progbar.add(GANs[0].batch_size, values=[("Loss_D_real1", np.mean(l_disc_real1)),
("Loss_D_gen1", np.mean(l_disc_gen1)),
("Loss_G1", np.mean(l_gen_loss1)),
("Loss_Classifier1",np.mean(l_class_loss1)),
("Loss_D_real2", np.mean(l_disc_real2)),
("Loss_D_gen2", np.mean(l_disc_gen2)),
("Loss_G2", np.mean(l_gen_loss2)),
("Loss_Classifier2",np.mean(l_class_loss2)),
("Loss_Rec1", np.mean(l_rec1)),
("Loss_Rec2", np.mean(l_rec2)),
("Loss_GenClass1", np.mean(l_GenClass1)),
("Loss_AutoLabel", np.mean(l_GenClass2)),
("Loss_RecClass", np.mean(l_recClass))
])
for GAN in GANs:
# plot images 1 times per epochs if GAN.dir == 'BtoA':
if GAN.dir == 'BtoA':
X_source=B_data
Y_source=B_labels
X_dest = A_data
Y_dest = A_labels
elif GAN.dir == 'AtoB':
X_source=A_data
Y_source=A_labels
X_dest = B_data
Y_dest = B_labels
if batch_counter == n_batch_per_epoch:
#if batch_counter % (n_batch_per_epoch) == 0:
X_source_batch_plot, Y_source_batch_plot, idx_source_plot = next(gen_batch(X_source, Y_source, batch_size=GAN.batch_size))
returned_idx = plot_generated_batch(X_dest, X_source, GAN.generator_model, GAN.noise_dim, image_dim_ordering, idx_source_plot,
batch_size=GAN.batch_size,different_idx=True, datagen=GAN.datagen, data_aug=GAN.data_aug)
print ("Dest labels:")
print (Y_dest[returned_idx].argmax(1))
print ("Source labels:")
print (Y_source_batch_plot.argmax(1))
print('\nEpoch %s, Time: %s' % (e + 1, time.time() - start))
else:
idx_source_plot = 0
Y_source_batch_plot = 0
#Save model weights (by default, every 5 epochs)
if batch_counter == n_batch_per_epoch:
save_model_weights(GAN.generator_model, GAN.discriminator_model,
GAN.DCGAN_model, e, GAN.name, GAN.classificator_model, discriminator2=GAN.discriminator2)
return batch_counter, gen_iterations
def pretrain_disc( GAN, A_data, A_labels,B_data, B_labels,class_weight, pretrain_iters=100, resume=False):
l_real = deque(10 * [0], 10)
l_gen = deque(10 * [0], 10)
l_genclass = deque(10 * [0], 10)
if not resume:
_, _, _, _ = train_gan(GAN, pretrain_iters, A_data, A_labels, B_data, B_labels, 1, l_real, l_gen,l_gen,l_genclass,class_weight)
print "Pretrain of discriminator finished."
else:
print "resumed previous training."
def testing_class_accuracy(GANs,classificator_model, generator_model, vis_samples, noise_dim, noise_scale, data, labels):
acc=[]
loss=[]
for GAN in GANs:
if GAN.dir == 'BtoA':
# testing accuracy of trained classifier
X_noise = sample_noise(GAN.noise_scale, vis_samples, GAN.noise_dim)
Xsource_dataset_mapped = GAN.generator_model.predict(
[X_noise, data[:vis_samples]], batch_size=1000)
true_labels = labels[:vis_samples]
p1 = GAN.classificator_model.predict(Xsource_dataset_mapped, batch_size=1000, verbose=1)
score1 = np.sum(np.argmax(true_labels,axis=1) == np.argmax(p1, axis=1)) / float(true_labels.shape[0])
print('\n Classifier Accuracy and loss on full target domain: %.2f%% ' %
((100 * score1)))
if GAN.dir == 'AtoB':
X_noise = sample_noise(GAN.noise_scale, vis_samples, GAN.noise_dim)
Xsource_dataset_mapped = data[:vis_samples]
true_labels = labels[:vis_samples]
p2 = GAN.classificator_model.predict(Xsource_dataset_mapped, batch_size=1000, verbose=1)
score2 = np.sum(np.argmax(true_labels,axis=1) == np.argmax(p2, axis=1)) / float(true_labels.shape[0])
print('\n Classifier Accuracy and loss on full target domain: %.2f%% ' %
((100 * score2)))
res = []
for x in np.arange(0, 1.1, 0.1):
res.append((x, np.sum(np.argmax(true_labels,axis=1) == np.argmax(p1*x + p2*(1-x), axis=1)) / float(true_labels.shape[0])))
for (x, score) in res:
print("\n Coeff: %f - score: %.2f" % (x, score*100))
def train(**kwargs):
"""
Train standard DCGAN model
args: **kwargs (dict) keyword arguments that specify the model hyperparameters
"""
# Roll out the parameters
generator = kwargs["generator"]
discriminator = kwargs["discriminator"]
dset = kwargs["dset"]
img_dim = kwargs["img_dim"]
nb_epoch = kwargs["nb_epoch"]
batch_size = kwargs["batch_size"]
n_batch_per_epoch = kwargs["n_batch_per_epoch"]
bn_mode = kwargs["bn_mode"]
noise_dim = kwargs["noise_dim"]
noise_scale = kwargs["noise_scale"]
lr_rec = kwargs["lr_D"]
opt_rec = kwargs["opt_rec"]
lr_G = kwargs["lr_G"]
lr_D = kwargs["lr_D"]
opt_D = kwargs["opt_D"]
opt_G = kwargs["opt_G"]
use_mbd = kwargs["use_mbd"]
image_dim_ordering = kwargs["image_dim_ordering"]
epoch_size = n_batch_per_epoch * batch_size
deterministic1 = kwargs["deterministic1"]
deterministic2 = kwargs["deterministic2"]
inject_noise = kwargs["inject_noise"]
model = kwargs["model"]
no_supertrain = kwargs["no_supertrain"]
pureGAN = kwargs["pureGAN"]
lsmooth = kwargs["lsmooth"]
disc_type = kwargs["disc_type"]
resume = kwargs["resume"]
name = kwargs["name"]
wd = kwargs["wd"]
history_size = kwargs["history_size"]
monsterClass = kwargs["monsterClass"]
data_aug = kwargs["data_aug"]
disc_iters = kwargs["disc_iterations"]
class_weight = kwargs["class_weight"]
reconst_w= kwargs["reconst_w"]
rec = kwargs["rec"]
reconstClass = kwargs["reconstClass"]
pretrained = kwargs["pretrained"]
print("\nExperiment parameters:")
for key in kwargs.keys():
print key, kwargs[key]
print("\n")
#####some extra parameters:
noise_dim = (noise_dim,)
name1 = name + '1'
name2 = name + '2'
# Setup environment (logging directory etc)
general_utils.setup_logging("DCGAN")
gen_iterations = 0
# Loading data
A_data, A_labels, B_data, B_labels, n_classes, img_A_dim, img_B_dim = load_data(img_dim, image_dim_ordering, dset)
test_data, test_labels = load_testset(img_dim, image_dim_ordering, dset)
if deterministic1 is None:
deterministic1 = False
if deterministic2 is None:
deterministic2 = False
opt_D1, opt_G1, opt_C1, opt_Z1, opt_rec = build_opt(opt_D, opt_G, lr_D, lr_G, lr_rec, opt_rec)
generator_model1, discriminator_model1,discriminator_class1, classificator_model1, DCGAN_model1, GenClass_model1, zclass_model1 = load_compile_models(noise_dim, img_A_dim, img_B_dim,
deterministic1, pureGAN, wd, 'mse', 'categorical_crossentropy', disc_type, n_classes, opt_D1, opt_G1, opt_C1, opt_Z1, suffix=None, pretrained=pretrained)
load_pretrained_weights(generator_model1, discriminator_model1,discriminator_class1, DCGAN_model1, name1, B_data, B_labels, noise_scale, classificator_model1, resume=resume)
img_buffer1, datagen1 = load_buffer_and_augmentation(history_size, batch_size, img_A_dim, n_classes)
GAN1=_GAN(generator_model1, discriminator_model1, discriminator_class1,DCGAN_model1,GenClass_model1,classificator_model1, batch_size, img_A_dim,img_B_dim, noise_dim, noise_scale,
lr_D, lr_G, deterministic1, inject_noise, model, lsmooth, img_buffer1, datagen1, disc_type, data_aug, n_classes, disc_iters,name1, dir='AtoB' )
pretrain_disc( GAN1, A_data,A_labels, B_data, B_labels,class_weight, pretrain_iters=500, resume=resume)
#####################
##### Setup GAN2
opt_D2, opt_G2, opt_C2, opt_Z2 = build_opt(opt_D, opt_G, lr_D, lr_G)
generator_model2, discriminator_model2, discriminator_class2, classificator_model2, DCGAN_model2, GenClass_model2, zclass_model2 = load_compile_models(noise_dim, img_B_dim, img_A_dim,
deterministic2, pureGAN, wd, 'mse', 'categorical_crossentropy', disc_type, n_classes, opt_D2, opt_G2, opt_C2, opt_Z2, suffix=True)
load_pretrained_weights(generator_model2, discriminator_model2,discriminator_class2, DCGAN_model2, name2, B_data, B_labels, noise_scale, classificator_model2, resume=resume)
img_buffer2, datagen2 = load_buffer_and_augmentation(history_size, batch_size, img_B_dim, n_classes)
gen_entropy2=None
GAN2=_GAN(generator_model2, discriminator_model2, discriminator_class2, DCGAN_model2,GenClass_model2,classificator_model2, batch_size, img_B_dim,img_A_dim, noise_dim, noise_scale,
lr_D, lr_G, deterministic2, inject_noise, model, lsmooth, img_buffer2, datagen2, disc_type, data_aug, n_classes, disc_iters, name2, dir='BtoA' )
pretrain_disc( GAN2, A_data,A_labels, B_data, B_labels,class_weight, pretrain_iters=500, resume=resume)
################
####Reconstruction losses between Gen1 and Gen2:
rec1, rec2, recClass = load_compile_reconstructions(generator_model1, generator_model2,noise_dim,img_A_dim,img_B_dim,opt_G,opt_rec, classificator_model2)
if resume:
testing_class_accuracy([GAN1,GAN2],GAN1.classificator_model, GAN1.generator_model,
test_data.shape[0], GAN1.noise_dim, GAN1.noise_scale, test_data, test_labels)
# if two_gans:
# GANs=[GAN1,GAN2]
# else:
# GANs=[GAN1]
################
##################
for e in range(1, nb_epoch + 1):
# Initialize progbar and batch counter
progbar = generic_utils.Progbar(epoch_size,interval=0.2)
batch_counter = 1
start = time.time()
while batch_counter < n_batch_per_epoch:
l_disc_real1, l_disc_gen1, l_gen1, l_z1, l_class1,l_rec1,l_GenClass1,_ = get_loss_list()
A_data_batch, A_labels_batch, B_data_batch, B_labels_batch = train_gan(GAN1, GAN1.disc_iters, A_data, A_labels, B_data, B_labels, batch_counter, l_disc_real1, l_disc_gen1, l_gen1,l_GenClass1, class_weight)
l_disc_real2, l_disc_gen2, l_gen2, l_z2, l_class2, l_rec2, l_GenClass2, l_recClass = get_loss_list()
A_data_batch, A_labels_batch, B_data_batch, B_labels_batch = train_gan(GAN2, GAN2.disc_iters, A_data, A_labels, B_data, B_labels, batch_counter, l_disc_real2, l_disc_gen2,l_gen2,l_GenClass2, class_weight)
if rec:
train_rec(GAN1, rec1, rec2, A_data_batch, B_data_batch,l_rec1, l_rec2,reconst_w) #BRINGING US TO L.A.? :)
if reconstClass > 0.0:
train_recClass(GAN1,recClass, A_data_batch, A_labels_batch, l_recClass, reconstClass)
l_class1 = train_class(GAN1, l_class1, A_data_batch, A_labels_batch)
l_class2 = train_class(GAN2, l_class2, A_data_batch, A_labels_batch)
batch_counter, gen_iterations = visualize_save_stuffs([GAN1,GAN2], progbar, gen_iterations, batch_counter, n_batch_per_epoch,
l_disc_real1, l_disc_gen1, l_gen1, l_class1, l_disc_real2, l_disc_gen2,
l_gen2, l_class2, A_data, A_labels, B_data, B_labels,start,e,l_rec1, l_rec2,
l_GenClass1, l_GenClass2, l_recClass)
testing_class_accuracy([GAN1,GAN2],GAN1.classificator_model, GAN1.generator_model,
test_data.shape[0], GAN1.noise_dim, GAN1.noise_scale, test_data, test_labels)
# testing_class_accuracy([GAN1],GAN1.classificator_model, GAN1.generator_model,
# 5000, GAN1.noise_dim, GAN1.noise_scale, B_data, B_labels)