-
Notifications
You must be signed in to change notification settings - Fork 113
/
AirQuality-Multiple_Gas_Sensor1_4.ino
702 lines (650 loc) · 30.6 KB
/
AirQuality-Multiple_Gas_Sensor1_4.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*
Arduino Multiple Air Quality Sensors
connect the sensor as follows when standalone:
A H A >>> 5V
B >>> A0
H >>> GND
B >>> 10K/20K ohm >>> GND
Contribution: epierre
Based on David Gironi http://davidegironi.blogspot.fr/2014/01/cheap-co2-meter-using-mq135-sensor-with.html
Precaution:
The gasses detected by these gas sensors can be deadly in high concentrations. Always be careful to perform gas tests in well ventilated areas.
Note:
THESE GAS SENSOR MODULES ARE NOT DESIGNED FOR OR APPROVED FOR ANY APPLICATION INVOLVING HEALTH OR HUMAN SAFETY. THESE GAS SENSOR MODULES ARE FOR EXPERIMENTAL PURPOSES ONLY.
License: Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
*/
#include <SPI.h>
#include <MySensor.h>
#include <Wire.h>
#include <DHT.h>
#include <Adafruit_BMP085.h>
/************************Hardware Related Macros************************************/
#define MQ2_SENSOR (0) //define which analog input channel you are going to use
#define MQ6_SENSOR (1)
#define MQ131_SENSOR (2)
#define TGS2600_SENSOR (3)
#define MQ135_SENSOR (4)
#define S2SH12_SENSOR (15)
#define DUST_SENSOR_ANALOG_PIN (11)
#define DUST_SENSOR_DIGITAL_PIN (13)
#define HUMIDITY_SENSOR_DIGITAL_PIN (6)
#define MQ136_SENSOR (7)
#define MQ138_SENSOR (8)
#define TGS2602_SENSOR (14)
#define HCHO_SENSOR (16)
#define MS2610_SENSOR (17)
#define PRESSURE_SENSOR_DIGITAL_PIN (14)
#define RL_VALUE (990) //define the load resistance on the board, in ohms
/***********************Software Related Macros************************************/
#define CALIBRATION_SAMPLE_TIMES (50) //define how many samples you are going to take in the calibration phase
#define CALIBRATION_SAMPLE_INTERVAL (500) //define the time interal(in milisecond) between each samples in the
//cablibration phase
#define READ_SAMPLE_INTERVAL (50) //define how many samples you are going to take in normal operation
#define READ_SAMPLE_TIMES (5) //define the time interal(in milisecond) between each samples in
/**********************Application Related Macros**********************************/
#define GAS_CL2 (0)
#define GAS_O3 (1)
#define GAS_CO2 (2)
#define GAS_CO (3)
#define GAS_NH4 (4)
#define GAS_CH3 (6)
#define GAS_CH3_2CO (7)
#define GAS_H2 (8)
#define GAS_C2H5OH (9) //Alcohol, Ethanol
#define GAS_C4H10 (10)
#define GAS_LPG (11)
#define GAS_Smoke (12)
#define GAS_CO_sec (13)
#define GAS_LPG_sec (14)
#define GAS_CH4 (15)
#define GAS_NO2 (16)
#define GAS_SO2 (17)
#define GAS_C7H8 (18) //Toluene
#define GAS_H2S (19) //Hydrogen Sulfide
#define GAS_NH3 (20) //Ammonia
#define GAS_C6H6 (21) //Benzene
#define GAS_C3H8 (22) //Propane
#define GAS_NHEX (23) //n-hexa
#define GAS_HCHO (24) //HCHO / CH2O Formaldehyde
/*****************************Globals***********************************************/
float COCurve[2] = {37793.94418, -3.24294658}; //MQ2
float H2Curve[2] = {957.1355042, -2.07442628}; //MQ2
float LPGCurve[2] = {591.6128784, -1.679699732}; //MQ2
float SmokeCurve[2] = {3426.376355, -2.225037973}; //MQ2
float LPG_secCurve[2] = {1051.200149, -2.434978052}; //MQ6
float CH4Curve[2] = {1081.498208, -1.443059209}; //MQ6
float H2_secCurve[2] = {137997.7173, -3.76632598}; //MQ6
float CL2Curve[2] = {56.01727602, -1.359048399}; //MQ131
float O3Curve[2] = {42.84561841, -1.043297135}; //MQ131
float O3_secCurve[2] = {45.34696335, 1.743219536}; //MS2610
float CO2Curve[2] = {113.7105289, -3.019713765}; //MQ135
float CO_secCurve[2] = {726.7809737, -4.040111669}; //MQ135
float NH4Curve[2] = {84.07117895, -4.41107687}; //MQ135
float C2H50H_Curve[2] = {74.77989144, 3.010328075}; //MQ135
float CH3Curve[2] = {47.01770503, -3.281901967}; //MQ135
float CH3_2COCurve[2] = {7.010800878, -2.122018939}; //MQ135
float SO2_Curve[2] = {40.44109566, -1.085728557}; //MQ136 http://china-total.com/product/meter/gas-sensor/MQ136.pdf
float CH4_secCurve[2] = {57.82777729, -1.187494933}; //MQ136 http://china-total.com/product/meter/gas-sensor/MQ136.pdf
float CO_terCurve[2] = {2142.297846, -2.751369226}; //MQ136 http://china-total.com/product/meter/gas-sensor/MQ136.pdf
float H2S_secCurve[2] = {,}; //MQ136 http://www.sensorica.ru/pdf/MQ-136.pdf
float NH4_secCurve[2] = {,}; //MQ136 http://www.sensorica.ru/pdf/MQ-136.pdf
float NHEX_Curve[2] = {2142.297846, -2.751369226}; //MQ138 (1.8,200) (0.8,1000) (0.28,10000)
float C6H6_Curve[2] = {2142.297846, -2.751369226}; //MQ138 (2.1,200) (1,1000) (0.32,10000)
float C3H8_Curve[2] = {2142.297846, -2.751369226}; //MQ138 (1.8,200) (0.8,1000) (0.28,10000)
float C2H5OH_terCurve[2] = {2142.297846, -2.751369226};//MQ138 (3,200) (1.8,1000) (0.7,10000)
float CH4_terCurve[2] = {2142.297846, -2.751369226}; //MQ138 (3,200) (1.8,1000) (0.7,10000)
float C2H5OH_secCurve[2] = {0.2995093465,-3.148170562};//TGS2600
float C4H10Curve[2] = {0.3555567714, -3.337882361}; //TGS2600
float H2_terCurve[2] = {0.3417050674, -2.887154835}; //TGS2600
float C7H8Curve[2] = {0.1319857248, -1.69516241}; //TGS2602 (0.3;1)( 0.08;10) (0.04;30)
float H2S_Curve[2] = {0.05566582614,-2.954075758}; //TGS2602 (0.8,0.1) (0.4,1) (0.25,3)
float C2H5OH_quarCurve[2] = {0.5409499131,-2.312489623};//TGS2602 (0.75,1) (0.3,10) (0.17,30)
float NH3_Curve[2] = {0.585030495, -3.448654502 }; //TGS2602 (0.8,1) (0.5,10) (0.3,30)
float HCHO_Curve[2] = {1.478772974, -2.224808489 }; //HCHO (0.59,5) (0.41,10) (0.23,40)
float H2_quaCurve[2] = {2.452065204,-2.282530712}; //HCHO (0.68,5) (0.59,10) (0.29,40)
float C7H8_secCurve[2]= {4.798168577, -0.8100009624}; //HCHO Toluene (0.8,5) (0.5,10) (0.07,40)
float C6H6_secCurve[2]= {5.59434996, -0.6062729607}; //HCHO benzol (0.25,5) (0.8,10) (0.09,40)
float Ro = 10000; //Ro is initialized to 10 kilo ohms
unsigned long SLEEP_TIME = 600; // Sleep time between reads (in seconds)
//VARIABLES
float Ro0 = 4.300; //MQ2 3.83 this has to be tuned 10K Ohm
float RL0 = 2.897; //MQ2 Elecfreacks Octopus
float Ro1 = 1.755; //MQ6 25.76 this has to be tuned 10K Ohm
float RL1 = 0.993; //MQ6 Gas Sensor V1.3 auto-ctrl.com
float Ro2 = 2.501; //MQ131 2.24 this has to be tuned 10K Ohm
float RL2 = 0.679; //MQ131 Sainsmart
float Ro3 = 2.511; //TGS2600 0.05 this has to be tuned 10K Ohm
float RL3 = 0.893; //TGS2600 Sainsmart
float Ro4 = 2.511; //MQ135 2.51 this has to be tuned 10K Ohm
float RL4 = 0.990; //MQ135 FC-22
float Ro5 = 2.511; //2SH12
float RL5 = 4000; //2SH12 MQ-XL-V2 auto-ctrl.com
float Ro6 = 2.511; //TGS2602 0.05 this has to be tuned 10K Ohm
float RL6 = 0.893; //TGmq136S2602 Gas Sensor V1.3 auto-ctrl.com
int val = 0; // variable to store the value coming from the sensor
float calcVoltage = 0;
float dustDensity = 0;
boolean metric = true;
//DHT11
float lastTemp;
float lastHum;
//BMP085
float lastPressure = -1;
int lastForecast = -1;
char *weather[]={"stable","sunny","cloudy","unstable","thunderstorm","unknown"};
int minutes;
float pressureSamples[180];
int minuteCount = 0;
bool firstRound = true;
float pressureAvg[7];
float dP_dt;
//test
float a=0;
boolean pcReceived = false;
#define CHILD_ID_MQ2 0
#define CHILD_ID_MQ6 1
#define CHILD_ID_MQ131 2
#define CHILD_ID_TGS2600 3
#define CHILD_ID_MQ135 4
#define CHILD_ID_DUST 5
#define CHILD_ID_2SH12 6
#define CHILD_ID_HUM 7
#define CHILD_ID_TEMP 8
#define CHILD_ID_PRESSURE 9
#define CHILD_ID_FORECAST 10
#define CHILD_ID_TGS2602 11
DHT dht;
Adafruit_BMP085 bmp = Adafruit_BMP085(); // Digital Pressure Sensor
MySensor gw(48,49); // Arduino Mega initialization
MyMessage msg_dust(CHILD_ID_DUST, 45); //AqPM10
MyMessage msg_mq2(CHILD_ID_MQ2, 40); //Smoke
MyMessage pcMsg_mq2(CHILD_ID_MQ2,V_VAR1);
MyMessage msg_mq6(CHILD_ID_MQ6, 41); //LPG
MyMessage pcMsg_mq6(CHILD_ID_MQ6,V_VAR1);
MyMessage msg_mq131(CHILD_ID_MQ131, 42); //Aq03
MyMessage pcMsg_mq131(CHILD_ID_MQ131,V_VAR1);
MyMessage msg_tgs2600(CHILD_ID_TGS2600, 43);//AqH2
MyMessage pcMsg_tgs2600(CHILD_ID_TGS2600,V_VAR1);
MyMessage msg_mq135(CHILD_ID_MQ135, 44); //AqCO
MyMessage pcMsg_mq135(CHILD_ID_MQ135,V_VAR1);
MyMessage msg_2sh12(CHILD_ID_2SH12, 46); //AqSO2
MyMessage pcMsg_2sh12(CHILD_ID_2SH12,V_VAR1);
MyMessage msgHum(CHILD_ID_HUM, V_HUM);
MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);
MyMessage pressureMsg(CHILD_ID_PRESSURE, V_PRESSURE);
MyMessage forecastMsg(CHILD_ID_FORECAST, V_FORECAST);
MyMessage msg_tgs2602(CHILD_ID_TGS2602, 47);//AqH2
MyMessage pcMsg_tgs2602(CHILD_ID_TGS2602,V_VAR1);
void setup()
{
gw.begin(incomingMessage);
/* gw.request(CHILD_ID_MQ2, V_VAR1);
gw.request(CHILD_ID_MQ6, V_VAR1);
gw.request(CHILD_ID_MQ131, V_VAR1);
gw.request(CHILD_ID_TGS2600, V_VAR1);
gw.request(CHILD_ID_MQ135, V_VAR1);
gw.request(CHILD_ID_2SH12, V_VAR1);
gw.request(CHILD_ID_TGS2602, V_VAR1);*/
dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN);
if (!bmp.begin()) {
Serial.println("Could not find a valid BMP085 sensor, check wiring!");
while (1) { }
}
// Send the sketch version information to the gateway and Controller
gw.sendSketchInfo("AIQ Multi Sensors", "1.0");
// Register all sensors to gateway (they will be created as child devices)
gw.present(CHILD_ID_MQ2, S_AIR_QUALITY);
gw.present(CHILD_ID_MQ6, S_AIR_QUALITY);
gw.present(CHILD_ID_MQ131, S_AIR_QUALITY);
gw.present(CHILD_ID_TGS2600, S_AIR_QUALITY);
gw.present(CHILD_ID_MQ135, S_AIR_QUALITY);
gw.present(CHILD_ID_DUST, S_AIR_QUALITY);
gw.present(CHILD_ID_2SH12, S_AIR_QUALITY);
gw.present(CHILD_ID_HUM, S_HUM);
gw.present(CHILD_ID_TEMP, S_TEMP);
gw.present(CHILD_ID_PRESSURE, S_BARO);
gw.present(CHILD_ID_TGS2602, S_AIR_QUALITY);
metric = gw.getConfig().isMetric;
// delay(50*1000); //delay to allow serial to fully print before sleep
Serial.print("Ro -->\n MQ2:");
Ro0 = MQCalibration(MQ2_SENSOR,10,RL0,SmokeCurve);
Serial.println(Ro0);
gw.send(pcMsg_mq2.set((long int)ceil(Ro0)));
Serial.print(" MQ6:");
Ro1 = MQCalibration(MQ6_SENSOR,10,RL1,LPGCurve);
Serial.println(Ro1);
gw.send(pcMsg_mq6.set((long int)ceil(Ro1)));
Serial.print(" MQ131:");
Ro2 = MQCalibration(MQ131_SENSOR,10,RL2,O3Curve);
Serial.println(Ro2);
gw.send(pcMsg_mq131.set((long int)ceil(Ro2)));
Serial.print(" TGS2600:");
Ro3 = MQCalibration(TGS2600_SENSOR,10,RL3,C2H5OH_secCurve);
Serial.println(Ro3);
gw.send(pcMsg_tgs2600.set((long int)ceil(Ro3)));
Serial.print(" MQ135:");
Ro4 = MQCalibration(MQ135_SENSOR,10,RL4,CO_secCurve);
Serial.println(Ro4);
gw.send(pcMsg_mq135.set((long int)Ro4));
Serial.print(" 2SH12:");
Ro5 = MQResistanceCalculation(analogRead(S2SH12_SENSOR),RL5);
Serial.println(Ro5);
gw.send(pcMsg_2sh12.set((long int)ceil(Ro5)));
pinMode(DUST_SENSOR_DIGITAL_PIN,OUTPUT); //light on led
Serial.print(" TGZS2602:");
Ro6 = MQCalibration(TGS2602_SENSOR,1,RL6,C7H8Curve);
Serial.println(Ro6);
gw.send(pcMsg_tgs2602.set((long int)ceil(Ro6)));
}
void loop()
{
//DHT11 Temp+Hum
delay(dht.getMinimumSamplingPeriod());
float temperature = dht.getTemperature();
if (isnan(temperature)) {
Serial.println("Failed reading temperature from DHT");
} else if (temperature != lastTemp) {
lastTemp = temperature;
if (!metric) {
temperature = dht.toFahrenheit(temperature);
}
gw.send(msgTemp.set(temperature, 1));
Serial.print("T: ");
Serial.println(temperature);
}
float humidity = dht.getHumidity();
if (isnan(humidity)) {
Serial.println("Failed reading humidity from DHT");
} else if (humidity != lastHum) {
lastHum = humidity;
gw.send(msgHum.set(humidity, 1));
Serial.print("H: ");
Serial.println(humidity);
}
//BMP085 Pressure
float pressure = bmp.readPressure()/100;
float altitude = bmp.readAltitude();
if (!metric) {
// Convert to fahrenheit
temperature = temperature * 9.0 / 5.0 + 32.0;
}
int forecast = sample(pressure);
if (pressure != lastPressure) {
gw.send(pressureMsg.set(pressure,0));
lastPressure = pressure;
}
if (forecast != lastForecast) {
gw.send(forecastMsg.set(weather[forecast]));
lastForecast = forecast;
}
//MQ2 CO LPG Smoke
Serial.print("MQ2 :");
Serial.print("LPG :");
Serial.print(MQGetGasPercentage(MQRead(MQ2_SENSOR,RL0),Ro0,GAS_LPG,MQ2_SENSOR) );
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("CO :");
Serial.print(MQGetGasPercentage(MQRead(MQ2_SENSOR,RL0),Ro0,GAS_CO_sec,MQ2_SENSOR) );
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("SMOKE :");
Serial.print(MQGetGasPercentage(MQRead(MQ2_SENSOR,RL0),Ro0,GAS_Smoke,MQ2_SENSOR) );
gw.send(msg_mq2.set((int)ceil(MQGetGasPercentage(MQRead(MQ2_SENSOR,RL0),Ro0,GAS_Smoke,MQ2_SENSOR))));
Serial.print( "ppm" );
Serial.print("\n");
//MQ6
Serial.print("MQ6 :");
Serial.print("LPG :");
Serial.print(MQGetGasPercentage(MQRead(MQ6_SENSOR,RL1),Ro1,GAS_LPG_sec,MQ6_SENSOR) );
gw.send(msg_mq6.set((int)ceil(MQGetGasPercentage(MQRead(MQ6_SENSOR,RL1),Ro1,GAS_LPG,MQ6_SENSOR))));
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("CH4 :");
Serial.print(MQGetGasPercentage(MQRead(MQ6_SENSOR,RL1),Ro1,GAS_CH4,MQ6_SENSOR) );
Serial.print( "ppm" );
Serial.print("\n");
//MQ131 CL2 O3
Serial.print("MQ131 :");
// Serial.print(analogRead(MQ131_SENSOR));
Serial.print("CL2 :");
Serial.print(MQGetGasPercentage(MQRead(MQ131_SENSOR,RL2),Ro2,GAS_CL2,MQ131_SENSOR) );
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("O3 :");
Serial.print(MQGetGasPercentage(MQRead(MQ131_SENSOR,RL2),Ro2,GAS_O3,MQ131_SENSOR) );
gw.send(msg_mq131.set((int)ceil(MQGetGasPercentage(MQRead(MQ131_SENSOR,RL2),Ro2,GAS_O3,MQ131_SENSOR))));
Serial.print( "ppm" );
Serial.print("\n");
//TGS2600 H2 C2H5OH C4H10
Serial.print("TGS2600:");
Serial.print("H2 :");
Serial.print(MQGetGasPercentage(MQRead(TGS2600_SENSOR,RL3),Ro3,GAS_H2,TGS2600_SENSOR) );
gw.send(msg_tgs2600.set((int)ceil(MQGetGasPercentage(MQRead(TGS2600_SENSOR,RL3),Ro3,GAS_H2,TGS2600_SENSOR))));
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("C2H5OH:");
Serial.print(MQGetGasPercentage(MQRead(TGS2600_SENSOR,RL3),Ro3,GAS_C2H5OH,TGS2600_SENSOR) );
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("C4H10 :");
Serial.print(MQGetGasPercentage(MQRead(TGS2600_SENSOR,RL3),Ro3,GAS_C4H10,TGS2600_SENSOR) );
Serial.print( "ppm" );
Serial.print("\n");
//MQ135 CO NH4 CH3 CO2
Serial.print("MQ135 :");
Serial.print("CO2 :");
Serial.print(MQGetGasPercentage(MQRead(MQ135_SENSOR,RL4),Ro4,GAS_CO2,MQ135_SENSOR) );
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("CO :");
Serial.print(MQGetGasPercentage(MQRead(MQ135_SENSOR,RL4),Ro4,GAS_CO,MQ135_SENSOR) );
Serial.print( "ppm" );
gw.send(msg_mq135.set((int)ceil(MQGetGasPercentage(MQRead(MQ135_SENSOR,RL4),Ro4,GAS_CO,MQ135_SENSOR))));
Serial.print(" ");
Serial.print("CH3 :");
Serial.print(MQGetGasPercentage(MQRead(MQ135_SENSOR,RL4),Ro4,GAS_CH3,MQ135_SENSOR) );
Serial.print( "ppm" );
Serial.print(" ");
Serial.print("NH4 :");
Serial.print(MQGetGasPercentage(MQRead(MQ135_SENSOR,RL4),Ro4,GAS_NH4,MQ135_SENSOR) );
Serial.print( "ppm" );
Serial.print("\n");
//2SH12
Serial.print("2SH12 :");
Serial.print("SO2 :");
a=analogRead(S2SH12_SENSOR);
Serial.print(a); Serial.print( " raw " );
Serial.print("\n");
gw.send(msg_2sh12.set((int)ceil(analogRead(S2SH12_SENSOR))));
//TGS2602 C7H8
Serial.print("TGS2602:");
Serial.print("C7H8 :");
Serial.print(MQGetGasPercentage(MQRead(TGS2602_SENSOR,RL6),Ro6,GAS_C7H8,TGS2602_SENSOR) );
gw.send(msg_tgs2602.set((int)ceil(MQGetGasPercentage(MQRead(TGS2602_SENSOR,RL6),Ro6,GAS_C7H8,TGS2602_SENSOR))));
Serial.print( "ppm" );
Serial.print("\n");
digitalWrite(DUST_SENSOR_DIGITAL_PIN,LOW); // power on the LED
delayMicroseconds(280);
uint16_t voMeasured = analogRead(DUST_SENSOR_ANALOG_PIN);// Get DUST value
delayMicroseconds(40);
digitalWrite(DUST_SENSOR_DIGITAL_PIN,HIGH); // turn the LED off
// 0 - 5V mapped to 0 - 1023 integer values
// recover voltage
calcVoltage = voMeasured * (5.0 / 1024.0); // Adapt to device voltage
// linear eqaution taken from http://www.howmuchsnow.com/arduino/airquality/
// Chris Nafis (c) 2012
// dustDensity = (0.17 * calcVoltage - 0.1)*1000;
dustDensity = (0.17 * calcVoltage - 0.1);
Serial.print("Dust :raw : ");
Serial.print(voMeasured);
Serial.print(" Voltage: ");
Serial.print(calcVoltage);
Serial.print(" - Dust Density: ");
Serial.println(dustDensity); // unit: ug/m3
Serial.print("\n");
gw.send(msg_dust.set((int)ceil(dustDensity)));
// Power down the radio. Note that the radio will get powered back up
// on the next write() call.
delay(SLEEP_TIME * 1000); //delay to allow serial to fully print before sleep
//gw.powerDown();
//sleep.pwrDownMode(); //set sleep mode
//gw.sleep(SLEEP_TIME * 1000); //sleep for: sleepTime
}
/****************** MQResistanceCalculation ****************************************
Input: raw_adc - raw value read from adc, which represents the voltage
Output: the calculated sensor resistance
Remarks: The sensor and the load resistor forms a voltage divider. Given the voltage across the load resistor and its resistance, the resistance of the sensor could be derived.
************************************************************************************/
float MQResistanceCalculation(int raw_adc,float rl_value)
{
return (long)((long)(1024*1000*(long)rl_value)/raw_adc-(long)rl_value);
;
}
/***************************** MQCalibration ****************************************
Input: mq_pin - analog channel
Output: Ro of the sensor
Remarks: This function assumes that the sensor is in clean air. It use
MQResistanceCalculation to calculates the sensor resistance in clean air. .
************************************************************************************/
float MQCalibration(int mq_pin, double ppm, double rl_value,float *pcurve )
{
int i;
float val=0;
for (i=0;i<CALIBRATION_SAMPLE_TIMES;i++) { //take multiple samples
val += MQResistanceCalculation(analogRead(mq_pin),rl_value);
delay(CALIBRATION_SAMPLE_INTERVAL);
}
val = val/CALIBRATION_SAMPLE_TIMES; //calculate the average value
//Ro = Rs * sqrt(a/ppm, b) = Rs * exp( ln(a/ppm) / b )
return (long)val*exp((log(pcurve[0]/ppm)/pcurve[1]));
}
/***************************** MQRead *********************************************
Input: mq_pin - analog channel
Output: Rs of the sensor
Remarks: This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
The Rs changes as the sensor is in the different consentration of the target
gas. The sample times and the time interval between samples could be configured
by changing the definition of the macros.
************************************************************************************/
float MQRead(int mq_pin,float rl_value)
{
int i;
float rs=0;
for (i=0;i<READ_SAMPLE_TIMES;i++) {
rs += MQResistanceCalculation(analogRead(mq_pin),rl_value);
delay(READ_SAMPLE_INTERVAL);
}
rs = rs/READ_SAMPLE_TIMES;
return rs;
}
/***************************** MQGetGasPercentage **********************************
Input: rs_ro_ratio - Rs divided by Ro
gas_id - target gas type
Output: ppm of the target gas
Remarks: This function passes different curves to the MQGetPercentage function which
calculates the ppm (parts per million) of the target gas.
************************************************************************************/
int MQGetGasPercentage(float rs_ro_ratio, float ro, int gas_id, int sensor_id)
{
if (sensor_id == MQ2_SENSOR ) {
if ( gas_id == GAS_CO ) {
return MQGetPercentage(rs_ro_ratio,ro,COCurve); //MQ2
} else if ( gas_id == GAS_H2 ) {
return MQGetPercentage(rs_ro_ratio,ro,H2Curve); //MQ2
} else if ( gas_id == GAS_LPG ) {
return MQGetPercentage(rs_ro_ratio,ro,LPGCurve); //MQ2
} else if ( gas_id == GAS_Smoke ) {
return MQGetPercentage(rs_ro_ratio,ro,SmokeCurve); //MQ2
}
} else if (sensor_id == MQ6_SENSOR ){
if ( gas_id == GAS_LPG_sec ) {
return MQGetPercentage(rs_ro_ratio,ro,LPG_secCurve); //MQ6
} else if ( gas_id == GAS_CH4 ) {
return MQGetPercentage(rs_ro_ratio,ro,CH4Curve); //MQ6
} else if ( gas_id == GAS_H2 ) {
return MQGetPercentage(rs_ro_ratio,ro,H2_secCurve); //MQ6
}
} else if (sensor_id == MQ131_SENSOR ){
if ( gas_id == GAS_CL2 ) {
return MQGetPercentage(rs_ro_ratio,ro,CL2Curve); //MQ131
} else if ( gas_id == GAS_O3 ) {
return MQGetPercentage(rs_ro_ratio,ro,O3Curve); //MQ131
}
} else if (sensor_id == MQ135_SENSOR ){
if ( gas_id == GAS_CO2 ) {
return MQGetPercentage(rs_ro_ratio,ro,CO2Curve); //MQ135
} else if ( gas_id == GAS_NH4 ) {
return MQGetPercentage(rs_ro_ratio,ro,NH4Curve); //MQ135
} else if ( gas_id == GAS_C2H5OH ) {
return MQGetPercentage(rs_ro_ratio,ro,C2H50H_Curve); //MQ135
} else if ( gas_id == GAS_CH3 ) {
return MQGetPercentage(rs_ro_ratio,ro,CH3Curve); //MQ135
} else if ( gas_id == GAS_CH3_2CO ) {
return MQGetPercentage(rs_ro_ratio,ro,CH3_2COCurve); //MQ135
} else if ( gas_id == GAS_CO_sec ) {
return MQGetPercentage(rs_ro_ratio,ro,CO_secCurve); //MQ135
}
} else if (sensor_id == MQ136_SENSOR ){
if ( gas_id == GAS_SO2 ) {
return MQGetPercentage(rs_ro_ratio,ro,SO2_Curve); //MQ136
} else if ( gas_id == GAS_CH4 ) {
return MQGetPercentage(rs_ro_ratio,ro,CH4_secCurve); //MQ136
} else if ( gas_id == GAS_CO ) {
return MQGetPercentage(rs_ro_ratio,ro,CO_terCurve); //MQ136
}
} else if (sensor_id == MQ138_SENSOR ){
if ( gas_id == GAS_C6H6 ) {
return MQGetPercentage(rs_ro_ratio,ro,C6H6_Curve); //MQ138
} else if ( gas_id == GAS_CH4 ) {
return MQGetPercentage(rs_ro_ratio,ro,CH4_terCurve); //MQ138
} else if ( gas_id == GAS_C3H8 ) {
return MQGetPercentage(rs_ro_ratio,ro,C3H8_Curve); //MQ138
} else if ( gas_id == GAS_NHEX ) {
return MQGetPercentage(rs_ro_ratio,ro,NHEX_Curve); //MQ138
}
} else if (sensor_id == TGS2600_SENSOR ){
if ( gas_id == GAS_C2H5OH ) {
return MQGetPercentage(rs_ro_ratio,ro,C2H5OH_secCurve); //TGS2600
} else if ( gas_id == GAS_C4H10 ) {
return MQGetPercentage(rs_ro_ratio,ro,C4H10Curve); //TGS2600
} else if ( gas_id == GAS_H2 ) {
return MQGetPercentage(rs_ro_ratio,ro,H2_terCurve); //TGS2600
}
} else if (sensor_id == TGS2602_SENSOR ){
if ( gas_id == GAS_C7H8 ) {
return MQGetPercentage(rs_ro_ratio,ro,C7H8Curve); //TGS2602
} else if ( gas_id == GAS_H2S ) {
return MQGetPercentage(rs_ro_ratio,ro,H2S_Curve); //TGS2602
} else if ( gas_id == GAS_NH3 ) {
return MQGetPercentage(rs_ro_ratio,ro,NH3_Curve); //TGS2602
} else if ( gas_id == GAS_C2H5OH ) {
return MQGetPercentage(rs_ro_ratio,ro,C2H5OH_quarCurve); //TGS2602
}
} else if (sensor_id == S2SH12_SENSOR) {
if ( gas_id == GAS_SO2 ) {
//return MQGetPercentage(rs_ro_ratio,ro,C2H5OHCurve); //2SH12
return rs_ro_ratio;
}
} else if (sensor_id == HCHO_SENSOR) {
if ( gas_id == GAS_HCHO ) {
//return MQGetPercentage(rs_ro_ratio,ro,HCHO_Curve); //HCHO
return rs_ro_ratio;
}
}
return 0;
}
/***************************** MQGetPercentage **********************************
Input: rs_ro_ratio - Rs divided by Ro
pcurve - pointer to the curve of the target gas
Output: ppm of the target gas
Remarks: By using the slope and a point of the line. The x(logarithmic value of ppm)
of the line could be derived if y(rs_ro_ratio) is provided. As it is a
logarithmic coordinate, power of 10 is used to convert the result to non-logarithmic
value.
************************************************************************************/
int MQGetPercentage(float rs_ro_ratio, float ro, float *pcurve)
{
return (double)(pcurve[0] * pow(((double)rs_ro_ratio/ro), pcurve[1]));
}
/********************************** sample ***************************************
Input: pressure
Output: an int containing the weather based on pressure
************************************************************************************/
int sample(float pressure) {
// Algorithm found here
// http://www.freescale.com/files/sensors/doc/app_note/AN3914.pdf
if (minuteCount > 180)
minuteCount = 6;
pressureSamples[minuteCount] = pressure;
minuteCount++;
if (minuteCount == 5) {
// Avg pressure in first 5 min, value averaged from 0 to 5 min.
pressureAvg[0] = ((pressureSamples[1] + pressureSamples[2]
+ pressureSamples[3] + pressureSamples[4] + pressureSamples[5])
/ 5);
} else if (minuteCount == 35) {
// Avg pressure in 30 min, value averaged from 0 to 5 min.
pressureAvg[1] = ((pressureSamples[30] + pressureSamples[31]
+ pressureSamples[32] + pressureSamples[33]
+ pressureSamples[34]) / 5);
float change = (pressureAvg[1] - pressureAvg[0]);
if (firstRound) // first time initial 3 hour
dP_dt = ((65.0 / 1023.0) * 2 * change); // note this is for t = 0.5hour
else
dP_dt = (((65.0 / 1023.0) * change) / 1.5); // divide by 1.5 as this is the difference in time from 0 value.
} else if (minuteCount == 60) {
// Avg pressure at end of the hour, value averaged from 0 to 5 min.
pressureAvg[2] = ((pressureSamples[55] + pressureSamples[56]
+ pressureSamples[57] + pressureSamples[58]
+ pressureSamples[59]) / 5);
float change = (pressureAvg[2] - pressureAvg[0]);
if (firstRound) //first time initial 3 hour
dP_dt = ((65.0 / 1023.0) * change); //note this is for t = 1 hour
else
dP_dt = (((65.0 / 1023.0) * change) / 2); //divide by 2 as this is the difference in time from 0 value
} else if (minuteCount == 95) {
// Avg pressure at end of the hour, value averaged from 0 to 5 min.
pressureAvg[3] = ((pressureSamples[90] + pressureSamples[91]
+ pressureSamples[92] + pressureSamples[93]
+ pressureSamples[94]) / 5);
float change = (pressureAvg[3] - pressureAvg[0]);
if (firstRound) // first time initial 3 hour
dP_dt = (((65.0 / 1023.0) * change) / 1.5); // note this is for t = 1.5 hour
else
dP_dt = (((65.0 / 1023.0) * change) / 2.5); // divide by 2.5 as this is the difference in time from 0 value
} else if (minuteCount == 120) {
// Avg pressure at end of the hour, value averaged from 0 to 5 min.
pressureAvg[4] = ((pressureSamples[115] + pressureSamples[116]
+ pressureSamples[117] + pressureSamples[118]
+ pressureSamples[119]) / 5);
float change = (pressureAvg[4] - pressureAvg[0]);
if (firstRound) // first time initial 3 hour
dP_dt = (((65.0 / 1023.0) * change) / 2); // note this is for t = 2 hour
else
dP_dt = (((65.0 / 1023.0) * change) / 3); // divide by 3 as this is the difference in time from 0 value
} else if (minuteCount == 155) {
// Avg pressure at end of the hour, value averaged from 0 to 5 min.
pressureAvg[5] = ((pressureSamples[150] + pressureSamples[151]
+ pressureSamples[152] + pressureSamples[153]
+ pressureSamples[154]) / 5);
float change = (pressureAvg[5] - pressureAvg[0]);
if (firstRound) // first time initial 3 hour
dP_dt = (((65.0 / 1023.0) * change) / 2.5); // note this is for t = 2.5 hour
else
dP_dt = (((65.0 / 1023.0) * change) / 3.5); // divide by 3.5 as this is the difference in time from 0 value
} else if (minuteCount == 180) {
// Avg pressure at end of the hour, value averaged from 0 to 5 min.
pressureAvg[6] = ((pressureSamples[175] + pressureSamples[176]
+ pressureSamples[177] + pressureSamples[178]
+ pressureSamples[179]) / 5);
float change = (pressureAvg[6] - pressureAvg[0]);
if (firstRound) // first time initial 3 hour
dP_dt = (((65.0 / 1023.0) * change) / 3); // note this is for t = 3 hour
else
dP_dt = (((65.0 / 1023.0) * change) / 4); // divide by 4 as this is the difference in time from 0 value
pressureAvg[0] = pressureAvg[5]; // Equating the pressure at 0 to the pressure at 2 hour after 3 hours have past.
firstRound = false; // flag to let you know that this is on the past 3 hour mark. Initialized to 0 outside main loop.
}
if (minuteCount < 35 && firstRound) //if time is less than 35 min on the first 3 hour interval.
return 5; // Unknown, more time needed
else if (dP_dt < (-0.25))
return 4; // Quickly falling LP, Thunderstorm, not stable
else if (dP_dt > 0.25)
return 3; // Quickly rising HP, not stable weather
else if ((dP_dt > (-0.25)) && (dP_dt < (-0.05)))
return 2; // Slowly falling Low Pressure System, stable rainy weather
else if ((dP_dt > 0.05) && (dP_dt < 0.25))
return 1; // Slowly rising HP stable good weather
else if ((dP_dt > (-0.05)) && (dP_dt < 0.05))
return 0; // Stable weather
else
return 5; // Unknown
}
void incomingMessage(const MyMessage &message) {
if (message.type==V_VAR1) {
long int pulseCount = message.getLong();
Serial.print("Received last pulse count from gw:");
Serial.println(pulseCount);
pcReceived = true;
}
}