-
Notifications
You must be signed in to change notification settings - Fork 10
/
experiments.conf
251 lines (217 loc) · 6 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
best {
data_dir = /path/to/data/dir # Edit this
# Computation limits.
max_top_antecedents = 50
max_training_sentences = 5
top_span_ratio = 0.4
max_num_extracted_spans = 3900
max_num_speakers = 20
max_segment_len = 256
# Learning
bert_learning_rate = 1e-5
task_learning_rate = 2e-4
loss_type = marginalized # {marginalized, hinge}
mention_loss_coef = 0
false_new_delta = 1.5 # For loss_type = hinge
adam_eps = 1e-6
adam_weight_decay = 1e-2
warmup_ratio = 0.1
max_grad_norm = 1 # Set 0 to disable clipping
gradient_accumulation_steps = 1
# Model hyperparameters.
coref_depth = 1 # when 1: no higher order (except for cluster_merging)
higher_order = attended_antecedent # {attended_antecedent, max_antecedent, entity_equalization, span_clustering, cluster_merging}
coarse_to_fine = true
fine_grained = true
dropout_rate = 0.3
ffnn_size = 1000
ffnn_depth = 1
cluster_ffnn_size = 1000 # For cluster_merging
cluster_reduce = mean # For cluster_merging
easy_cluster_first = false # For cluster_merging
cluster_dloss = false # cluster_merging
num_epochs = 24
feature_emb_size = 20
max_span_width = 30
use_metadata = true
use_features = true
use_segment_distance = true
model_heads = true
use_width_prior = true # For mention score
use_distance_prior = true # For mention-ranking score
# Other.
conll_eval_path = ${best.data_dir}/dev.english.v4_gold_conll # gold_conll file for dev
conll_test_path = ${best.data_dir}/test.english.v4_gold_conll # gold_conll file for test
genres = ["bc", "bn", "mz", "nw", "pt", "tc", "wb"]
eval_frequency = 1000
report_frequency = 100
log_root = ${best.data_dir}
}
bert_base = ${best}{
num_docs = 2802
bert_learning_rate = 1e-05
task_learning_rate = 2e-4
max_segment_len = 128
ffnn_size = 3000
cluster_ffnn_size = 3000
max_training_sentences = 11
bert_tokenizer_name = bert-base-cased
bert_pretrained_name_or_path = bert-base-cased
}
train_bert_base = ${bert_base}{
}
train_bert_base_ml0_d1 = ${train_bert_base}{
mention_loss_coef = 0
coref_depth = 1
}
train_bert_base_ml0_d2 = ${train_bert_base}{
mention_loss_coef = 0
coref_depth = 2
}
bert_large = ${best}{
num_docs = 2802
bert_learning_rate = 1e-05
task_learning_rate = 2e-4
max_segment_len = 384
ffnn_size = 3000
cluster_ffnn_size = 3000
max_training_sentences = 3
bert_tokenizer_name = bert-base-cased
bert_pretrained_name_or_path = bert-large-cased
}
train_bert_large = ${bert_large}{
}
train_bert_large_ml0_d1 = ${train_bert_large}{
mention_loss_coef = 0
coref_depth = 1
}
train_bert_large_ml0_d2 = ${train_bert_large}{
mention_loss_coef = 0
coref_depth = 2
}
spanbert_base = ${best}{
num_docs = 2802
bert_learning_rate = 2e-05
task_learning_rate = 0.0001
max_segment_len = 384
ffnn_size = 3000
cluster_ffnn_size = 3000
max_training_sentences = 3
bert_tokenizer_name = bert-base-cased
bert_pretrained_name_or_path = ${best.data_dir}/spanbert_base
}
train_spanbert_base = ${spanbert_base}{
}
debug_spanbert_base = ${train_spanbert_base}{
}
train_spanbert_base_ml0_d1 = ${train_spanbert_base}{
mention_loss_coef = 0
coref_depth = 1
}
train_spanbert_base_ml0_lr2e-4_d1 = ${train_spanbert_base}{
mention_loss_coef = 0
task_learning_rate = 2e-4
coref_depth = 1
}
spanbert_large = ${best}{
num_docs = 2802
bert_learning_rate = 1e-05
task_learning_rate = 0.0003
max_segment_len = 512
ffnn_size = 3000
cluster_ffnn_size = 3000
max_training_sentences = 3
bert_tokenizer_name = bert-base-cased
bert_pretrained_name_or_path = ${best.data_dir}/spanbert_large
}
train_spanbert_large = ${spanbert_large}{
}
train_spanbert_large_ml0_d1 = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
}
train_spanbert_large_ml0_lr_d1 = ${train_spanbert_large}{
mention_loss_coef = 0
bert_learning_rate = 2e-05
task_learning_rate = 2e-4
coref_depth = 1
}
train_spanbert_large_ml0_d2 = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 2
}
train_spanbert_large_ml0_lr_d2 = ${train_spanbert_large}{
mention_loss_coef = 0
bert_learning_rate = 2e-05
task_learning_rate = 2e-4
coref_depth = 2
}
train_spanbert_large_ml0_sc = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 2
higher_order = span_clustering
}
train_spanbert_large_ml0_cm_fn1000 = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
}
train_spanbert_large_ml0_cm_fn1000_dloss = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
cluster_dloss = true
}
train_spanbert_large_ml0_cm_fn1000_e1st = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
easy_cluster_first = true
}
train_spanbert_large_ml0_cm_fn1000_e1st_dloss = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
easy_cluster_first = true
cluster_dloss = true
}
train_spanbert_large_ml0_cm_fn1000_max = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
cluster_reduce = max
}
train_spanbert_large_ml0_cm_fn1000_max_dloss = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
cluster_reduce = max
cluster_dloss = true
}
train_spanbert_large_ml0_cm_fn1000_max_e1st = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
cluster_reduce = max
easy_cluster_first = true
}
train_spanbert_large_ml0_cm_fn1000_max_e1st_dloss = ${train_spanbert_large}{
mention_loss_coef = 0
coref_depth = 1
higher_order = cluster_merging
cluster_ffnn_size = 1000
cluster_reduce = max
easy_cluster_first = true
cluster_dloss = true
}
train_spanbert_large_ml1_d1 = ${train_spanbert_large}{
mention_loss_coef = 1
coref_depth = 1
}