-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
created tau_plots.py
- Loading branch information
Showing
1 changed file
with
155 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import numpy as np, pandas as pd, matplotlib.pyplot as plt, matplotlib as mpl, awkward as ak, sys | ||
import mplhep as hep | ||
hep.style.use("CMS") | ||
|
||
plt.rcParams['figure.facecolor']='white' | ||
plt.rcParams['savefig.facecolor']='white' | ||
plt.rcParams['savefig.bbox']='tight' | ||
|
||
plt.rcParams["figure.figsize"] = (7, 7) | ||
|
||
config=sys.argv[1].split("/")[1] #results/{config}/{benchmark_name} | ||
outdir=sys.argv[1]+"/" | ||
try: | ||
import os | ||
os.mkdir(outdir[:-1]) | ||
except: | ||
pass | ||
|
||
import uproot as ur | ||
arrays_sim={p:ur.open(f'sim_output/insert_tau/{config}_rec_tau-_{p}GeV.edm4eic.root:events').arrays() for p in (20, 30, 40, 50, 60,80,100)} | ||
|
||
for a in arrays_sim.values(): | ||
#recon | ||
Etot=0 | ||
px=0 | ||
py=0 | ||
pz=0 | ||
for det in "HcalEndcapPInsert", "EcalEndcapPInsert", "EcalEndcapP", "LFHCAL": | ||
|
||
E=a[f'{det}Clusters.energy'] | ||
|
||
|
||
#if det=="EcalEndcapPInsert": | ||
# E=E/1.08 | ||
E=E*(-0*E+1.2) | ||
|
||
|
||
#uncorr=(e/w+h) | ||
#s=-0.0064*uncorr+1.80 | ||
#r=uncorr*s #reconstructed energy with correction | ||
|
||
x=a[f'{det}Clusters.position.x'] | ||
y=a[f'{det}Clusters.position.y'] | ||
z=a[f'{det}Clusters.position.z'] | ||
r=np.sqrt(x**2+y**2+z**2) | ||
Etot=Etot+np.sum(E, axis=-1) | ||
px=px+np.sum(E*x/r,axis=-1) | ||
py=py+np.sum(E*y/r,axis=-1) | ||
pz=pz+np.sum(E*z/r,axis=-1) | ||
|
||
a['jet_p_recon']=np.sqrt(px**2+py**2+pz**2) | ||
a['jet_E_recon']=Etot | ||
|
||
a['jet_theta_recon']=np.arctan2(np.hypot(px*np.cos(-.025)-pz*np.sin(-.025),py), | ||
pz*np.cos(-.025)+px*np.sin(-.025)) | ||
|
||
#truth | ||
m=a['MCParticles.mass'][::,2:] | ||
px=a['MCParticles.momentum.x'][::,2:] | ||
py=a['MCParticles.momentum.y'][::,2:] | ||
pz=a['MCParticles.momentum.z'][::,2:] | ||
E=np.sqrt(m**2+px**2+py**2+pz**2) | ||
status=a['MCParticles.simulatorStatus'][::,2:] | ||
PDG=a['MCParticles.PDG'][::,2:] | ||
|
||
#find the hadronic part: initial-state tau - all leptons | ||
selection=1*(PDG==15)-1*(np.abs(PDG)==16) | ||
is_hadronic=1*(np.sum((PDG==-14)+(PDG==-12), axis=-1)==0) | ||
|
||
px_hfs, py_hfs, pz_hfs= np.sum(px*selection,axis=-1)*is_hadronic,np.sum(py*selection,axis=-1)*is_hadronic, np.sum(pz*selection,axis=-1)*is_hadronic | ||
|
||
a['hfs_p_truth']=np.sqrt(px_hfs**2+py_hfs**2+pz_hfs**2) | ||
a['hfs_E_truth']=np.sum(E*selection,axis=-1)*is_hadronic | ||
|
||
|
||
a['hfs_theta_truth']=np.arctan2(np.hypot(px_hfs*np.cos(-.025)-pz_hfs*np.sin(-.025),py_hfs), | ||
pz_hfs*np.cos(-.025)+px_hfs*np.sin(-.025)) | ||
a['hfs_eta_truth']=-np.log(np.tan(a['hfs_theta_truth']/2)) | ||
a['n_mu']=np.sum(np.abs(PDG)==13, axis=-1) | ||
a['n_e']=np.sum(np.abs(PDG)==13, axis=-1) | ||
a['hfs_mass_truth']=np.sqrt(a['hfs_E_truth']**2-a['hfs_p_truth']**2) | ||
|
||
for a in arrays_sim.values(): | ||
selection=(a['hfs_eta_truth']>3.1) & (a['hfs_eta_truth']<3.8)\ | ||
&(a['n_mu']==0)&(a['n_e']==0)&(a['hfs_mass_truth']>.140)&(a['jet_E_recon']>0) | ||
|
||
Etruth=[] | ||
Erecon=[] | ||
|
||
theta_truth=[] | ||
theta_recon=[] | ||
|
||
eta_max=3.7 | ||
eta_min=3.3 | ||
for a in arrays_sim.values(): | ||
selection=(a['hfs_eta_truth']>eta_min) & (a['hfs_eta_truth']<eta_max)\ | ||
&(a['n_mu']==0)&(a['n_e']==0)&(a['hfs_mass_truth']>.140)&(a['jet_E_recon']>1) | ||
theta_truth=np.concatenate((theta_truth,a['hfs_theta_truth'][selection])) | ||
theta_recon=np.concatenate((theta_recon,a['jet_theta_recon'][selection])) | ||
Etruth=np.concatenate((Etruth,a['hfs_E_truth'][selection])) | ||
Erecon=np.concatenate((Erecon,a['jet_E_recon'][selection])) | ||
|
||
plt.figure() | ||
plt.scatter(theta_truth, theta_recon, 1) | ||
plt.xlabel("$\\theta^{hfs}_{\\rm truth}$ [rad]") | ||
plt.ylabel("$\\theta^{hfs}_{\\rm rec}$ [rad]") | ||
plt.title(f"$E_{{\\tau}}$=20-100 GeV, ${eta_min}<\\eta_{{hfs}}<{eta_max}$") | ||
plt.plot([0.04,0.1], [0.04, 0.1], color='tab:orange') | ||
plt.ylim(0, 0.15) | ||
plt.savefig(outdir+"/theta_scatter.pdf") | ||
|
||
plt.figure() | ||
plt.scatter(Etruth, Erecon, 1) | ||
plt.xlabel("$E^{hfs}_{\\rm truth}$ [GeV]") | ||
plt.ylabel("$E^{hfs}_{\\rm rec}$ [GeV]") | ||
plt.title(f"$E_{{\\tau}}$=20-100 GeV, ${eta_min}<\\eta_{{hfs}}<{eta_max}$") | ||
plt.plot((0,100), (0, 100), color='tab:orange') | ||
plt.savefig(outdir+"/energy_scatter.pdf") | ||
|
||
def gauss(x, A,mu, sigma): | ||
return A * np.exp(-(x-mu)**2/(2*sigma**2)) | ||
from scipy.optimize import curve_fit | ||
|
||
res=[] | ||
dres=[] | ||
emid=[] | ||
ew=[] | ||
partitions=(20,30, 40, 60,80,100) | ||
for emin, emax in zip(partitions[:-1], partitions[1:]): | ||
|
||
y,x = np.histogram((theta_recon-theta_truth)[(Etruth>emin)&(Etruth<emax)], bins=100, range=(-0.03,0.03)) | ||
bc=(x[1:]+x[:-1])/2 | ||
slc=abs(bc)<0.5 | ||
# try: | ||
p0=(100, 0, 0.15) | ||
fnc=gauss | ||
sigma=np.sqrt(y[slc])+(y[slc]==0) | ||
|
||
coeff, var_matrix = curve_fit(fnc, list(bc[slc]), list(y[slc]), p0=p0,sigma=list(sigma)) | ||
res.append(abs(coeff[2])) | ||
dres.append(np.sqrt(var_matrix[2][2])) | ||
emid.append((emin+emax)/2) | ||
ew.append((emax-emin)/2) | ||
plt.errorbar(emid, 1000*np.array(res),1000*np.array(dres), ew, ls='', label=f'{eta_min}<$\\eta_{{hfs}}$<{eta_max}') | ||
plt.xlabel('$E_{hfs}$ [GeV]') | ||
plt.ylabel('$\\theta$ resolution [mrad]') | ||
plt.ylim(0) | ||
|
||
fnc=lambda E,B:B/E | ||
p0=[1,] | ||
coeff, var_matrix = curve_fit(fnc, emid, res, p0=p0,sigma=list(dres)) | ||
xx=np.linspace(10, 100, 100) | ||
plt.plot(xx, 1000*fnc(xx, *coeff), label=f"fit: ${coeff[0]:.2f}/E$ mrad") | ||
plt.legend() | ||
plt.savefig(outdir+"/theta_res.pdf") |