forked from insarlab/MintPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
time_func.py
476 lines (382 loc) · 19.1 KB
/
time_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
"""Utilities for time functions."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Zhang Yunjun, Yuan-Kai Liu, Aug 2021 #
############################################################
# Recommend import:
# from mintpy.utils import time_func
import math
import numpy as np
from scipy import linalg
from mintpy.utils import ptime
MODEL_EXAMPLE = """time function configuration:
model = {
'polynomial' : 2, # int, polynomial degree with 1 (linear), 2 (quadratic), 3 (cubic), etc.
'periodic' : [1.0, 0.5], # list(float), period(s) in years. 1.0 (annual), 0.5 (semiannual), etc.
'stepDate' : ['20061014'], # list(str), date(s) for the onset of step in YYYYMMDD.
'polyline' : ['20190101'], # list(str), date(s) for the onset of extra line segments in YYYYMMDD.
'exp' : {'20181026': [60], # dict, key for onset time in YYYYMMDD(THHMM) and value for char times in integer days.
...
},
'log' : {'20161231': [80], # dict, key for onset time in YYYYMMDD(THHMM) and value for char times in integer days.
'20190125': [100, 200],
...
},
...
}
"""
def estimate_time_func(model, date_list, dis_ts, ref_date=None, seconds=0):
"""Deformation model estimator, using a suite of linear, periodic, step, exponential, and logarithmic function(s).
Problem setup:
Gm = d
Parameters: model - dict, time functions config, e.g. {cfg}
date_list - list of str, dates in YYYYMMDD format
dis_ts - 2D np.ndarray, displacement observation in size of (num_date, num_pixel)
ref_date - reference date from date_list
seconds - float or str, acquisition time of the day info in seconds.
Returns: G - 2D np.ndarray, design matrix in size of (num_date, num_param)
m - 2D np.ndarray, parameter solution in size of (num_param, num_pixel)
e2 - 1D np.ndarray, sum of squared residual in size of (num_pixel,)
""".format(cfg=MODEL_EXAMPLE)
G = get_design_matrix4time_func(date_list, model, ref_date=ref_date, seconds=seconds)
# least squares solver
# Opt. 1: m = np.linalg.pinv(G).dot(dis_ts)
# Opt. 2: m = scipy.linalg.lstsq(G, dis_ts, cond=1e-15)[0]
# Numpy is not used because it can not handle NaN value in dis_ts
m, e2 = linalg.lstsq(G, dis_ts, cond=None)[:2]
# check empty e2 due to the rank-deficient G matrix for sigularities.
e2 = np.array(e2)
if e2.size == 0:
print('\nWarning: empty e2 residues array due to a redundant or rank-deficient G matrix. This can cause sigularities.')
print('Please check: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html#scipy.linalg.lstsq')
print('The issue may be due to:')
print('\t1) very small char time(s) or tau(s) of the exp/log function(s)')
print('\t2) the onset time(s) of exp/log are far earlier than the minimum date of the time series.')
print('Try a different char time, onset time.')
print('Your G matrix of the temporal model: \n', G)
raise ValueError('G matrix is redundant/rank-deficient!')
return G, m, e2
def inps2model(inps, date_list=None, print_msg=True):
"""Convert time function inputs from namespace (inps) into dict object.
Parameters: inps - namespace, parsed time function inputs. E.g.:
Namespace(
date_list=['20141213', '20141225', ...] # optional
polynomial=1,
periodic=[1.0, 0.5],
stepDate=['20110311', '20120928T1733'],
polyline=['20190101'],
exp=[['20170910', '60', '200'], ['20171026', '200']],
log=[['20170910', '60', '200'], ['20171026', '200']],
)
date_list - list of str, date in YYYYMMDD(THHMM) format
Returns: model - dict, time function configuration, e.g. {cfg}
""".format(cfg=MODEL_EXAMPLE)
if not date_list:
if hasattr(inps, 'dateList'):
date_list = inps.date_list
else:
raise ValueError('date_list NOT given or found in inps!')
dmin, dmax = date_list[0], date_list[-1]
ymin = ptime.yyyymmdd2years(dmin)
ymax = ptime.yyyymmdd2years(dmax)
## inps --> model
model = dict()
model['polynomial'] = inps.polynomial
model['periodic'] = inps.periodic
model['stepDate'] = inps.stepDate
model['polyline'] = inps.polyline
if inps.periodic:
# check 1 - positive value
if any(x <= 0 for x in inps.periodic):
raise ValueError(f'Zero or negative input period ({inps.periodic}) found!')
if inps.stepDate:
# check 1 - min/max limit
for d_step in inps.stepDate:
if not (ymin < ptime.yyyymmdd2years(d_step) < ymax):
raise ValueError(f'input step date ({d_step}) exceeds date limit: ({dmin} / {dmax})!')
if inps.polyline:
# check 1 - min/max limit
for d_start in inps.polyline:
if not (ymin < ptime.yyyymmdd2years(d_start) < ymax):
raise ValueError(f'input polyline date ({d_start}) exceeds date limit: ({dmin} / {dmax})!')
for func_name, strs_list in zip(['exp', 'log'], [inps.exp, inps.log]):
func_dict = dict()
if strs_list:
for strs in strs_list:
onset_time, char_times = strs[0], strs[1:]
char_times = [float(x) for x in char_times]
# check 1 - onset_time - str format
date_fmt = ptime.get_date_str_format(onset_time)
if date_fmt not in ['%Y%m%d', '%Y%m%dT%H%M']:
raise ValueError(f'input onset time {onset_time} is NOT in YYYYMMDD(THHMM) format!')
# check 2 - onset_time - min/max limit
if ptime.yyyymmdd2years(onset_time) >= ymax:
raise ValueError(f'input exp onset date ({onset_time}) >= the last date: {dmax}')
# check 3 - char_time - input format
if len(char_times) == 0:
msg = 'NO characteristic time inputs found!\n'
msg += '1+ characteristic time(s) are required for each onset date'
msg += f' for the {func_name} function, e.g.:\n'
msg += f'--{func_name} 20181026 60 OR\n'
msg += f'--{func_name} 20161231 80 200 # append as many char_times as you like!'
raise ValueError(msg)
elif any(x <= 0 for x in char_times):
raise ValueError(f'Zero or negative characteristic time ({char_times}) found!')
else:
int_char_times = [int(x) for x in char_times]
for int_char_time, char_time in zip(int_char_times, char_times):
if int_char_time != char_time:
msg = 'WARNING: float-format characteristic time detected.'
msg += '\nIgnore the fraction part of a day and continue: '
msg += f'{char_time} --> {int_char_time} days.'
print(msg)
# save as dict
func_dict[onset_time] = int_char_times
# save to model
model[func_name] = func_dict
## print out model summary
if print_msg:
print('estimate deformation model with the following assumed time functions:')
for key, value in model.items():
print(f' {key:<10} : {value}')
# warning if no polynomial found
if 'polynomial' not in model.keys():
raise ValueError('linear/polynomial model is NOT included! Are you sure?!')
return model
def get_num_param(model):
"""Get the number of unknown parameters from the given time function configuration.
Parameters: model - dict, time functions config, e.g. {cfg}
Returns: num_param - int, number of unknown parameters
""".format(cfg=MODEL_EXAMPLE)
num_param = (
model['polynomial'] + 1
+ len(model['periodic']) * 2
+ len(model['stepDate'])
+ len(model['polyline'])
+ sum(len(val) for key, val in model['exp'].items())
+ sum(len(val) for key, val in model['log'].items())
)
return num_param
#################################### Design Matrices ##########################################
def get_design_matrix4time_func(date_list, model=None, ref_date=None, seconds=0):
"""Design matrix (function model) for time functions parameter estimation.
Parameters: date_list - list of str in YYYYMMDD format, size=num_date
model - dict of time functions, e.g. {cfg}
ref_date - reference date from date_list
seconds - float or str, acquisition time of the day info in seconds.
Returns: A - 2D np.ndarray of design matrix in size of (num_date, num_param)
num_param = (poly_deg + 1) + 2*len(periodic) + len(steps) + len(exp_taus) + len(log_taus)
""".format(cfg=MODEL_EXAMPLE)
## prepare time info
# convert list of date into array of years in float
yr_diff = np.array(ptime.yyyymmdd2years(date_list, seconds=seconds))
# reference date
if ref_date is None:
ref_date = date_list[0]
yr_diff -= yr_diff[date_list.index(ref_date)]
## construct design matrix A
# default model value
if not model:
model = {'polynomial' : 1}
# read the models
poly_deg = model.get('polynomial', 0)
periods = model.get('periodic', [])
steps = model.get('stepDate', [])
polylines = model.get('polyline', [])
exps = model.get('exp', dict())
logs = model.get('log', dict())
num_period = len(periods)
num_step = len(steps)
num_pline = len(polylines)
num_exp = sum(len(val) for key, val in exps.items())
num_log = sum(len(val) for key, val in logs.items())
num_param = (poly_deg + 1) + (2 * num_period) + num_step + num_pline + num_exp + num_log
if num_param <= 1:
raise ValueError('NO time functions specified!')
# initialize the design matrix
num_date = len(yr_diff)
A = np.zeros((num_date, num_param), dtype=np.float32)
c0 = 0
# update linear/polynomial term(s)
# poly_deg of 0 --> offset
# poly_deg of 1 --> velocity
# ...
c1 = c0 + poly_deg + 1
A[:, c0:c1] = get_design_matrix4polynomial_func(yr_diff, poly_deg)
c0 = c1
# update periodic term(s)
if num_period > 0:
c1 = c0 + 2 * num_period
A[:, c0:c1] = get_design_matrix4periodic_func(yr_diff, periods)
c0 = c1
# update coseismic/step term(s)
if num_step > 0:
c1 = c0 + num_step
A[:, c0:c1] = get_design_matrix4step_func(date_list, steps, seconds=seconds)
c0 = c1
# update polyline term(s)
if num_pline > 0:
c1 = c0 + num_pline
A[:, c0:c1] = get_design_matrix4polyline(date_list, polylines, seconds=seconds)
c0 = c1
# update exponential term(s)
if num_exp > 0:
c1 = c0 + num_exp
A[:, c0:c1] = get_design_matrix4exp_func(date_list, exps, seconds=seconds)
c0 = c1
# update logarithmic term(s)
if num_log > 0:
c1 = c0 + num_log
A[:, c0:c1] = get_design_matrix4log_func(date_list, logs, seconds=seconds)
c0 = c1
return A
def get_design_matrix4polynomial_func(yr_diff, degree):
"""design matrix/function model of linear/polynomial velocity estimation
d = c0 + c1 * t + 1/2 * c2 * t^2 + 1/6 * c3 * t^3 + ...
The k! denominator makes the estimated polynomial coefficient (c_k) physically meaningful:
k=0 makes c0 the offset;
k=1 makes c1 the velocity;
k=2 makes c2 the acceleration;
k=3 makes c3 the acceleration rate;
Parameters: yr_diff - time difference from ref_date in decimal years
degree - polynomial models: 0=offset, 1=linear, 2=quadratic, 3=cubic, etc.
Returns: A - 2D np.ndarray of poly-coeff. in size of (num_date, degree+1)
"""
A = np.zeros([len(yr_diff), degree + 1], dtype=np.float32)
for i in range(degree+1):
A[:,i] = (yr_diff**i) / math.factorial(i)
return A
def get_design_matrix4periodic_func(yr_diff, periods):
"""design matrix/function model of periodic velocity estimation.
Parameters: yr_diff - 1D array of time difference from ref_date in decimal years
periods - list of period in years: 1=annual, 0.5=semiannual, etc.
Returns: A - 2D np.ndarray of periodic sine & cosine coeff. in size of (num_date, 2*num_period)
"""
num_date = len(yr_diff)
num_period = len(periods)
A = np.zeros((num_date, 2*num_period), dtype=np.float32)
for i, period in enumerate(periods):
c0, c1 = 2*i, 2*i+1
A[:, c0] = np.cos(2*np.pi/period * yr_diff)
A[:, c1] = np.sin(2*np.pi/period * yr_diff)
return A
def get_design_matrix4step_func(date_list, step_date_list, seconds=0):
"""design matrix/function model of coseismic velocity estimation.
Parameters: date_list - list of dates in YYYYMMDD format
step_date_list - Heaviside step function(s) with date in YYYYMMDD
Returns: A - 2D np.ndarray of 1 & 0 in size of (num_date, num_step)
"""
num_date = len(date_list)
num_step = len(step_date_list)
A = np.zeros((num_date, num_step), dtype=np.float32)
t = np.array(ptime.yyyymmdd2years(date_list, seconds=seconds))
t_steps = ptime.yyyymmdd2years(step_date_list)
for i, t_step in enumerate(t_steps):
A[:, i] = np.array(t > t_step).flatten()
return A
def get_design_matrix4polyline(date_list, start_date_list, seconds=0):
"""design matrix/function model of polyline (polygonal chain)
The polyline can be described as:
d = c + v * t, for t <= t1
= ... + p1 * (t - t1), for t1 < t <= t2
= ... + ... + p2 * (t - t2), for t2 < t ...
...
Parameters: date_list - list of dates in YYYYMMDD format
start_date_list - str, start date(s) for extra line segments in YYYYMMDD format
Returns: A - 2D np.ndarray in size of (num_date, 3)
"""
# str --> float in years
t = np.array(ptime.yyyymmdd2years(date_list, seconds=seconds))
t_start_list = ptime.yyyymmdd2years(start_date_list)
# construct the design matrix
num_date = len(t)
num_start = len(t_start_list)
A = np.zeros((num_date, num_start), dtype=np.float32)
for i, t_start in enumerate(t_start_list):
tbase = t - t_start
tbase[tbase < 0] = 0
A[:, i] = tbase
return A
def get_design_matrix4exp_func(date_list, exp_dict, seconds=0):
"""design matrix/function model of exponential postseismic relaxation estimation
Reference: Eq. (5) in Hetland et al. (2012, JGR).
Note that there is a typo in the paper for this equation, based on the MInTS code, it should be:
Sum_i{ a_i * H(t-Ti) * [1 - e^(-(t-T_i)/tau_i)] }
instead of the one below shown in the paper:
Sum_i{ a_i * H(t-Ti) * [1 - e^(-(t)/tau_i)] }
where:
a_i amplitude of i-th exp term
T_i onset time of i-th exp term
tau_i char time of i-th exp term (relaxation time)
H(t-T_i) Heaviside func of i-th exp term (ensuring the exp func is one-sided)
Parameters: date_list - list of dates in YYYYMMDD format
exp_dict - dict of exp func(s) info as:
{{onset_time1} : [{char_time11,...,char_time1N}],
{onset_time2} : [{char_time21,...,char_time2N}],
...
}
where onset_time is string in YYYYMMDD format and
char_time is float32 in decimal days
Returns: A - 2D np.ndarray of zeros & ones in size of (num_date, num_exp)
"""
num_date = len(date_list)
num_exp = sum(len(val) for key, val in exp_dict.items())
A = np.zeros((num_date, num_exp), dtype=np.float32)
t = np.array(ptime.yyyymmdd2years(date_list, seconds=seconds))
# loop for onset time(s)
i = 0
for exp_onset in exp_dict.keys():
# convert string to float in years
exp_T = ptime.yyyymmdd2years(exp_onset)
# loop for charateristic time(s)
for exp_tau in exp_dict[exp_onset]:
# convert time from days to years
exp_tau /= 365.25
A[:, i] = np.array(t > exp_T).flatten() * (1 - np.exp(-1 * (t - exp_T) / exp_tau))
i += 1
return A
def get_design_matrix4log_func(date_list, log_dict, seconds=0):
"""design matrix/function model of logarithmic postseismic relaxation estimation
Reference: Eq. (4) in Hetland et al. (2012, JGR)
Note that there is a typo in the paper for this equation, based on the MInTS code, it should be:
Sum_i{ a_i * H(t-Ti) * [1 + log((t-T_i)/tau_i)] }
instead of the one below shown in the paper:
Sum_i{ a_i * H(t-Ti) * [1 + log((t)/tau_i)] }
where:
a_i amplitude of i-th log term
T_i onset time of i-th log term
tau_i char time of i-th log term (relaxation time)
H(t-T_i) Heaviside func of i-th log term (ensuring the log func is one-sided)
Parameters: date_list - list of dates in YYYYMMDD format
log_dict - dict of log func(s) info as:
{{onset_time1} : [{char_time11,...,char_time1N}],
{onset_time2} : [{char_time21,...,char_time2N}],
...
}
where onset_time is string in YYYYMMDD format and
char_time is float32 in decimal days
Returns: A - 2D np.ndarray of zeros & ones in size of (num_date, num_log)
"""
num_date = len(date_list)
num_log = sum(len(log_dict[x]) for x in log_dict)
A = np.zeros((num_date, num_log), dtype=np.float32)
t = np.array(ptime.yyyymmdd2years(date_list, seconds=seconds))
# loop for onset time(s)
i = 0
for log_onset in log_dict.keys():
# convert string to float in years
log_T = ptime.yyyymmdd2years(log_onset)
# loop for charateristic time(s)
for log_tau in log_dict[log_onset]:
# convert time from days to years
log_tau /= 365.25
olderr = np.seterr(invalid='ignore', divide='ignore')
A[:, i] = np.array(t > log_T).flatten() * np.nan_to_num(
np.log(1 + (t - log_T) / log_tau),
nan=0,
neginf=0,
)
np.seterr(**olderr)
i += 1
return A