-
Notifications
You must be signed in to change notification settings - Fork 20
/
plot.py
executable file
·114 lines (90 loc) · 3.66 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3
import glob
import json
import statistics
import sys
def load_jsons(files):
js = []
for file in files:
try:
with open(file) as f:
j = json.load(f)
j["json_path"] = file
js.append(j)
except Exception as e:
print(f"Error loading {file}")
raise e
return js
def process(js, extractors):
by_name = {}
for j in js:
n, e = j["name"], j["extractor"]
by_name.setdefault(n, {})[e] = j
print("extractors:", extractors)
assert len(extractors) == 2
e1, e2 = extractors
e1_cumulative=0
e2_cumulative=0
summaries = {}
for name, d in by_name.items():
try:
if d[e1]["tree"] != d[e2]["tree"]:
print(name, " differs in tree cost: ", d[e1]["tree"], d[e2]["tree"]);
if d[e1]["dag"] != d[e2]["dag"]:
print(name, " differs in dag cost: ", d[e1]["dag"], d[e2]["dag"]);
tree_ratio = d[e1]["tree"] / d[e2]["tree"]
dag_ratio = d[e1]["dag"] / d[e2]["dag"]
micros_ratio = max(1, d[e1]["micros"]) / max(1, d[e2]["micros"])
e1_cumulative += d[e1]["micros"];
e2_cumulative += d[e2]["micros"];
summaries[name] = {
"tree": tree_ratio,
"dag": dag_ratio,
"micros": micros_ratio,
}
except Exception as e:
print(f"Error processing {name}")
raise e
print(f"cumulative time for {e1}: {e1_cumulative/1000:.0f}ms")
print(f"cumulative time for {e2}: {e2_cumulative/1000:.0f}ms")
print(f"cumulative tree cost for {e1}: {sum(d[e1]['tree'] for d in by_name.values()):.0f}")
print(f"cumulative tree cost for {e2}: {sum(d[e2]['tree'] for d in by_name.values()):.0f}")
print(f"cumulative dag cost for {e1}: {sum(d[e1]['dag'] for d in by_name.values()):.0f}")
print(f"cumulative dag cost for {e2}: {sum(d[e2]['dag'] for d in by_name.values()):.0f}")
print(f"Cumulative time for {e1}: {e1_cumulative/1000:.0f}ms")
print(f"Cumulative time for {e2}: {e2_cumulative/1000:.0f}ms")
print(f"{e1} / {e2}")
print("geo mean")
tree_summary = statistics.geometric_mean(s["tree"] for s in summaries.values())
dag_summary = statistics.geometric_mean(s["dag"] for s in summaries.values())
micros_summary = statistics.geometric_mean(s["micros"] for s in summaries.values())
print(f"tree: {tree_summary:.4f}")
print(f"dag: {dag_summary:.4f}")
print(f"micros: {micros_summary:.4f}")
print("quantiles")
def quantiles(key):
xs = [s[key] for s in summaries.values()]
qs = statistics.quantiles(xs, n=4)
with_extremes = [min(xs)] + qs + [max(xs)]
return ", ".join(f"{x:.4f}" for x in with_extremes)
print(f"tree: {quantiles('tree')}")
print(f"dag: {quantiles('dag')}")
print(f"micros: {quantiles('micros')}")
if __name__ == "__main__":
print()
print(" ------------------------ ")
print(" ------- plotting ------- ")
print(" ------------------------ ")
print()
files = sys.argv[1:] or glob.glob("output/**/*.json", recursive=True)
js = load_jsons(files)
print(f"Loaded {len(js)} jsons.")
extractors = sorted(set(j["extractor"] for j in js))
for i in range(len(extractors)):
for j in range(i + 1, len(extractors)):
ex1, ex2 = extractors[i], extractors[j]
if ex1 == ex2:
continue
print(f"###################################################\n{ex1} vs {ex2}\n\n")
process(js, [ex1, ex2])
print("\n\n")