forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_gl_khpa.py
186 lines (163 loc) · 5.06 KB
/
eval_gl_khpa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import time
import logging
import mxnet as mx
from common.logger_utils import initialize_logging
from gluon.utils import prepare_mx_context, prepare_model, calc_net_weight_count
from gluon.khpa import add_dataset_parser_arguments
from gluon.khpa import get_batch_fn
from gluon.khpa import get_val_data_source
from gluon.khpa import validate
def parse_args():
parser = argparse.ArgumentParser(
description='Evaluate a model for image classification (Gluon/KHPA)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
add_dataset_parser_arguments(parser)
parser.add_argument(
'--model',
type=str,
required=True,
help='type of model to use. see model_provider for options.')
parser.add_argument(
'--use-pretrained',
action='store_true',
help='enable using pretrained model from gluon.')
parser.add_argument(
'--dtype',
type=str,
default='float32',
help='data type for training. default is float32')
parser.add_argument(
'--resume',
type=str,
default='',
help='resume from previously saved parameters if not None')
parser.add_argument(
'--input-size',
type=int,
default=224,
help='size of the input for model. default is 224')
parser.add_argument(
'--resize-inv-factor',
type=float,
default=0.875,
help='inverted ratio for input image crop. default is 0.875')
parser.add_argument(
'--num-classes',
type=int,
default=28,
help='number of classes')
parser.add_argument(
'--in-channels',
type=int,
default=4,
help='number of input channels')
parser.add_argument(
'--num-gpus',
type=int,
default=0,
help='number of gpus to use.')
parser.add_argument(
'-j',
'--num-data-workers',
dest='num_workers',
default=4,
type=int,
help='number of preprocessing workers')
parser.add_argument(
'--batch-size',
type=int,
default=512,
help='training batch size per device (CPU/GPU).')
parser.add_argument(
'--save-dir',
type=str,
default='',
help='directory of saved models and log-files')
parser.add_argument(
'--logging-file-name',
type=str,
default='train.log',
help='filename of training log')
parser.add_argument(
'--log-packages',
type=str,
default='mxnet',
help='list of python packages for logging')
parser.add_argument(
'--log-pip-packages',
type=str,
default='mxnet-cu92',
help='list of pip packages for logging')
args = parser.parse_args()
return args
def test(net,
val_data,
batch_fn,
data_source_needs_reset,
dtype,
ctx,
calc_weight_count=False,
extended_log=False):
rmse_calc = mx.metric.RMSE()
tic = time.time()
rmse_val_value = validate(
metric_calc=rmse_calc,
net=net,
val_data=val_data,
batch_fn=batch_fn,
data_source_needs_reset=data_source_needs_reset,
dtype=dtype,
ctx=ctx)
if calc_weight_count:
weight_count = calc_net_weight_count(net)
logging.info('Model: {} trainable parameters'.format(weight_count))
if extended_log:
logging.info('Test: rmse={rmse:.4f} ({rmse})'.format(
rmse=rmse_val_value))
else:
logging.info('Test: rmse={rmse:.4f}'.format(
rmse=rmse_val_value))
logging.info('Time cost: {:.4f} sec'.format(
time.time() - tic))
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
ctx, batch_size = prepare_mx_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
dtype=args.dtype,
tune_layers="",
classes=args.num_classes,
in_channels=args.in_channels,
ctx=ctx)
input_image_size = net.in_size if hasattr(net, 'in_size') else (args.input_size, args.input_size)
val_data = get_val_data_source(
dataset_args=args,
batch_size=batch_size,
num_workers=args.num_workers,
input_image_size=input_image_size,
resize_inv_factor=args.resize_inv_factor)
batch_fn = get_batch_fn()
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
val_data=val_data,
batch_fn=batch_fn,
data_source_needs_reset=args.use_rec,
dtype=args.dtype,
ctx=ctx,
# calc_weight_count=(not log_file_exist),
calc_weight_count=True,
extended_log=True)
if __name__ == '__main__':
main()