forked from smitagh/Auto-Evaluation-of-Line-Following-Robot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
threaded_final.py
641 lines (536 loc) · 25.4 KB
/
threaded_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import imutils
import threading
import os
import glob
import numpy as np
import cv2
import csv
import cv2.aruco as aruco
import ast
import time
import sys
import pandas
#from evaluation import evaluation
'''
Scope : GLOBAL
Function : Read the data from the csv file written by the standard file containing the results and path of the images
'''
#magenta #neon green #green #blue
img_plot = [] # Reading the image with thick line
img_with_circles = [] # Reading the image with circles
hsv_values = [[[124,112,171],[148,193,255]],[[32,102,202],[43,163,255]],[[46,38,163],[67,170,255]],[[92,103,191],[111,195,255]]]
perfect_values= [] # This list will be formed once in the program. It will store the values from the csv file of perfect run
path_to_circle_image = "" #parsing through the list and giving the path of the image with circles
path_to_thick_line = "" #parsing through the list and giving the path of the image with thick line
# perfect_values[0][3] = [] #parsing through the list and giving the first coordinate of perfect trajectory
x_first = 0
y_first = 0 # x_first & y_first store integer value of the x & y coordinates of the first pixel of perfect trajectory
result_dic = [] # Each result's dictionary will be appended in this list
th =[] # The threads formed will be appended in this list
def mainplot(csvpath,folderpath,hsvtop,hsvphysical):
global perfect_values,path_to_circle_image,path_to_thick_line,x_first,y_first,img_plot,img_with_circles
with open(csvpath, 'r') as csvfile: # Opening the csv file
# creating a csv reader object
csvreader = csv.reader(csvfile)
# extracting field names through first row
fields = next(csvreader)
# extracting each data row one by one
for row in csvreader:
perfect_values.append(row)
path_to_circle_image = perfect_values[0][1] # parsing through the list and giving the path of the image with circles
path_to_thick_line = perfect_values[0][2] # parsing through the list and giving the path of the image with thick line
perfect_values[0][3] = ast.literal_eval(perfect_values[0][3]) # parsing through the list and giving the first coordinate of perfect trajectory
(x_first, y_first) = perfect_values[0][3][0] # x_first & y_first store integer value of the x & y coor
img_plot = cv2.imread(path_to_thick_line) # Reading the image with thick line
img_with_circles = cv2.imread(path_to_circle_image) # Reading the image with circles
plotcode(folderpath,hsvtop,hsvphysical)
csv_file_name = os.path.join(os.getcwd(), 'Results', 'intermediate_results.csv')
fields = ['Team_ID','Plot Path','Circle Path', 'Handling Count', "Physical Marker 1 Time", "Physical Marker 2 Time", "Follow Accuracy"]
with open(csv_file_name, 'w') as csvfile:
# creating a csv dict writer object
writer = csv.DictWriter(csvfile, fieldnames=fields)
# writing headers (field names)
writer.writeheader()
# writing data rows
#print(result_dic)
writer.writerows(result_dic)
#print(path_to_thick_line)
'''
Scope : GLOBAL
Function: To be used as reference lists in which items can be appended throughout the execution
'''
'''
Function Name : Plotcode
Parameters : None
Usage : This function contains the entire code which will firstly initiate the threads
'''
def plotcode(folderpath,hsvtop,hsvphysical):
print("in plotcode")
'''
Function name : aruco_coorinates
Parameters: file_name(Path of the video file)
Usage : This function will be called first as soon as thread is initialised.
It will return the ID of the Team and the 4 coordinates of the Arena
'''
def aruco_coordinates(file_name):
ids = None # initialising the ID as none
flag_contour = 0 # flag_contour variable is set at 0 until the arena is found in the frame. Then it is set to 1
cap = cv2.VideoCapture(file_name) # Capture video from camera
'''
This while loop will continue to run until the ID of the team AND the Arena is found.
If either of the thing is not found it will return False.
'''
while (cap.isOpened() and (flag_contour == 0 or ids == None)):
print("Hi")
ret, frame = cap.read()
area = (frame.shape) # Area of the frame
frame_area = area[0] * area[1] # Calaculating the area of the frame for comparison later
print("Frame Area")
# print(frame_area)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# Converting the frame to Grayscale for finding Aruco
'''
This if will be executed if the ID of the Aruco has not been found.
The variable ids will store the ID.
'''
if (ids == None):
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
gray = clahe.apply(gray)
gray_aruco = cv2.GaussianBlur(gray, (5, 5), 0)
aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250)
parameters = aruco.DetectorParameters_create()
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray_aruco, aruco_dict, parameters=parameters)
# print("id of aruco = ")
# print(ids.flatten())
'''
This if will be executed until the Arena has been found from the frame
To find the Arena, following steps are taking place:
'''
if flag_contour == 0:
# contour filtering part
blurred = cv2.bilateralFilter(gray, 11, 17, 17) # Blurring the frame
kernel = np.ones((5, 5), np.uint8) # Making a 5x5 Kernel
blurredopen = cv2.morphologyEx(blurred, cv2.MORPH_OPEN, kernel) # Morphological Opening
blurredopen = cv2.morphologyEx(blurredopen, cv2.MORPH_OPEN, kernel) # Morphological Closing
blurredclose = cv2.morphologyEx(blurredopen, cv2.MORPH_CLOSE, kernel) # Morphological Closing
edged = cv2.Canny(blurredclose, 30, 200) # Canny Edge Detection
cnts = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Finding contours from the edged frame
# cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10]
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
cntsSorted = sorted(cnts, key=lambda x: cv2.contourArea(x), reverse=True)[:1] # Putting the contours in the order of decreasing Area
for c in cntsSorted:
# approximate the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.01 * peri, True)
# if our approximated contour has four points, then
# we can assume that we have found our screen
if len(approx) == 4: # Checking if the Contour found has 4 corners
contour_area = (cv2.contourArea(c)) # Finding contour Area
# print("Area Percent")
# print(cv2.contourArea(c))
areapercent = (contour_area / frame_area) * 100 # As the arena will occupy Maximum Area of the Frame, we use it to find it
# print(areapercent)
if areapercent > 25: # If Contours's Area > 25% of the Total Area of the Frame, Then it is the Arena
# print("Arena Found")
screenCnt = approx
contours = screenCnt
flag_contour = 1 # Setting flag_contour to 1 as the Arena has been found
if flag_contour == 1 and ids != None:
break
print("i am out")
print(ids)
cap.release()
return ((ids.flatten()[0]), contours)
'''
Making a threading class.
This class will perform threading.
The constructor will initialise each thread
'''
# class evaluating_thread(threading.Thread):
#
# def __init__(self):
# threading.Thread.__init__(self)
# print("in eval thread")
class compute_frame(threading.Thread):
def __init__(self, filename, num):
threading.Thread.__init__(self)
print("const")
self.file_name = filename #file_name is passed to the thread
self.img = np.zeros((500, 500, 3), np.uint8) # Black image where the trajectory will be plotted
self.num = num # File_number is passed to thread for debugging purpose
self.circleimage = img_with_circles.copy() # Image with circle for programmatic evaluation
self.adj_x = 0 #this variable is used to adjust the offset while evaluating the trajectory
self.adj_y = 0 #this variable is used to adjust the offset while evaluating the trajectory
self.flag_first = True #This flag will be used to get first coordinates of the trajectory from thie video
self.flag_cnt = True #T
self.list_white = [] # This list will store the number of pixels plotted in and out of the reference trajectory for evaluation
self.pm_framecounts = [] # This list will contain the number of frames between 2 physical markers
self.li_pm = [] # This list will contain the number of color markers on the arena
self.pm_list = [] #
self.cnt_pm = 0 # This variable will be used to count the number of frames between 2 physical markers
self.total_frames = 0 #
self.fps = 30 #FPSof the video
self.flag_pm=0 #This flag will be set only if all of the number of color markers on the arena have been found
'''
Function Name : filter_top_of_robot
Parameters: frame
Return : None
Usage : This function will color filter the frame to find the color marker placed on the robot and plot a point on the position of its
centroid on 3 images: the plane black image(For feature matching and HOG) and the circular image and the thick image(For Programmatic evaluation)
This function works in the following way:
'''
def filter_top_of_robot(self, frame):
# global adj_x
# global adj_y
# print("I am in filter_top_of_robot")
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #Converting the frame to HSV
#print(hsv_values[hsvtop][0])
lower_red = np.array(hsv_values[hsvtop][0]) #Color range for Magenta
upper_red = np.array(hsv_values[hsvtop][1])
mask = cv2.inRange(hsv, lower_red, upper_red) # Applying a Mask to filter out color
res = cv2.bitwise_and(frame, frame, mask=mask) # Doing bitwise and to subtract all other colors
gray = cv2.cvtColor(res, cv2.COLOR_HSV2BGR) # Converting HSV to BGR
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY) # Converting BGR to Gray
gray = cv2.bilateralFilter(gray, 11, 17, 17) # Applying Bilateral Filter to reduce noise
edged = cv2.Canny(gray, 30, 200) # Applying Canny Edge Detection
(_, contours, _) = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # FInding contours
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
# global flag_first
if contours.__len__() != 0:
cnt = contours[0]
(x, y), radius = cv2.minEnclosingCircle(cnt) # Making Minimum Enclosing Circle around the contour to get the coordinates of the centre
center = (int(x), int(y))
# coordinates.append([x,y])
radius = int(radius)
cv2.circle(res, center, radius, (0, 255, 0), 2)
# print("area of circle = ")
# print((3.14)*(radius*radius))
if (3.14) * (radius * radius) < 700: # This will filter out small contours which are found
# print("small circle")
x = 0
y = 0
if self.flag_first==True and (x,y)!=(0,0): # This if will be executed if it is the first pixel in the trajectory
#print("adj")
#print(x,y)
#print(x_first,y_first)
self.adj_x = x_first - x
self.adj_y = y_first - y
# print(adj_x,adj_y)
self.flag_first = False
if int(x) != 0 and int(y) != 0:
x = x + self.adj_x
y = y + self.adj_y
#print(y,x)
if img_plot[int(y),int(x),0]==255: # Check if the pixel is plotted on White Foreground or Black Background
self.list_white.append(1)
else:
self.list_white.append(0)
cv2.line(self.circleimage, (int(x), int(y)), (int(x), int(y)), (255, 255, 255), 3)
cv2.line(self.img, (int(x), int(y)), (int(x), int(y)), (255, 255, 255), 1)
else:
cv2.line(self.img, (int(x), int(y)), (int(x), int(y)), (255, 255, 255), 3)
cv2.line(self.circleimage, (int(x), int(y)), (int(x), int(y)), (255, 255, 255), 1)
else:
print("no contour found bro")
# cv2.imshow("Contour_Filtering",res)
# cv2.imshow('Plot', self.img)
# cv2.waitKey(1)
'''
Function Name: warping
Parameters: Frame, Coordinates
Returns : The warped Frame which can be used further for color filtering
'''
def warping(self, image, contours):
# print("I am in warping")
x1 = contours[0][0][0]
y1 = contours[0][0][1]
x2 = contours[1][0][0]
y2 = contours[1][0][1]
x3 = contours[2][0][0]
y3 = contours[2][0][1]
x4 = contours[3][0][0]
y4 = contours[3][0][1]
# print("HII")
# print((x1, y1))
# print((x2, y2))
# print((x3, y3))
# print((x4, y4))
s1 = x1 + y1
s2 = x2 + y2
s3 = x3 + y3
s4 = x4 + y4
t = max(s1, s2, s3, s4)
if t == s1:
x2_main = x1
y2_main = y1
x1 = 0
y1 = 0
elif t == s2:
x2_main = x2
y2_main = y2
x2 = 0
y2 = 0
elif t == s3:
x2_main = x3
y2_main = y3
x3 = 0
y3 = 0
else:
x2_main = x4
y2_main = y4
x4 = 0
y4 = 0
#print(x2_main, y2_main)
t = min(s1, s2, s3, s4)
if t == s1:
x4_main = x1
y4_main = y1
x1 = 0
y1 = 0
elif t == s2:
x4_main = x2
y4_main = y2
x2 = 0
y2 = 0
elif t == s3:
x4_main = x3
y4_main = y3
x3 = 0
y3 = 0
else:
x4_main = x4
y4_main = y4
x4 = 0
y4 = 0
#print(x4_main, y4_main)
t = max(x1, x2, x3, x4)
x3_main = t
index_min = np.argmax([x1, x2, x3, x4])
if index_min == 0:
x1 = 0
elif index_min == 1:
x2 = 0
elif index_min == 2:
x3 = 0
else:
x4 = 0
t = max(x1, x2, x3, x4)
x1_main = t
t = max(y1, y2, y3, y4)
y1_main = t
index_min = np.argmax([y1, y2, y3, y4])
if index_min == 0:
y1 = 0
elif index_min == 1:
y2 = 0
elif index_min == 2:
y3 = 0
else:
y4 = 0
t = max(y1, y2, y3, y4)
y3_main = t
mask = np.zeros(image.shape, dtype=np.uint8)
roi_corners = np.array([[(x1_main, y1_main), (x2_main, y2_main), (x3_main, y3_main), (x4_main, y4_main)]], dtype=np.int32)
channel_count = image.shape[2]
ignore_mask_color = (255,) * channel_count
cv2.fillPoly(mask, roi_corners, ignore_mask_color)
masked_image = cv2.bitwise_and(image, mask)
pts1 = np.float32([(x3_main, y3_main), (x2_main, y2_main), (x4_main, y4_main), (x1_main, y1_main)])
pts2 = np.float32([[0, 0], [500, 0], [0, 500], [500, 500]])
M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(masked_image, M, (500, 500))
# cv2.imshow("Warped", dst)
# cv2.waitKey(1)
return dst
'''
Function Name: physical_marker
Parameters: frame
Returns : None
'''
def physical_marker(self, frame):
# global cnt_pm
# global pm_framecounts
# global flag_cnt
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower_red = np.array(hsv_values[hsvphysical][0])
upper_red = np.array(hsv_values[hsvphysical][1])
mask = cv2.inRange(hsv, lower_red, upper_red)
res = cv2.bitwise_and(frame, frame, mask=mask)
if self.flag_pm == 0:
kernel = np.ones((5, 5), np.uint8)
gray = cv2.cvtColor(res, cv2.COLOR_HSV2BGR)
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
# edged = cv2.Canny(gray, 30, 200)
gray = cv2.erode(gray, kernel, iterations=1)
gray = cv2.dilate(gray, kernel, iterations=5)
(_, contours, _) = cv2.findContours(gray.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
for cnt in contours:
# print("cnt = ")
# print(cnt)
(x, y), radius = cv2.minEnclosingCircle(cnt)
center = (int(x), int(y))
# coordinates.append([x,y])
radius = int(radius)
# cv2.circle(res, center, radius, (0, 255, 0), 2)
self.li_pm.append(center)
# old_x=x
# old_y=y
# print(li)
if self.li_pm.__len__() == 4:
print(self.li_pm.__len__())
# print(index_list)
self.flag_pm = 1
else:
#print("i am here")
self.li_pm.clear()
for c in self.li_pm:
#print(self.li_pm.__len__())
x = int(res[c[1], c[0]][0])
y = int(res[c[1], c[0]][1])
z = int(res[c[1], c[0]][2])
# print(li.index(c))
if (x + y + z) == 0:
self.cnt_pm += 1
print("in if")
self.li_pm.pop(self.li_pm.index(c))
if self.li_pm.__len__() % 2 != 0:
self.flag_cnt = False
# start = time.time()
else:
self.flag_cnt = True
# frame_value = self.cnt_pm
# print("time stops")
# end = time.time()
# print("Time taken = ")
# print(frame_value)
# time_taken = frame_value / fps
# pm_list.append(time_taken)
if self.li_pm.__len__()==2:
print("physical1")
self.pm_framecounts.append(self.cnt_pm)
self.cnt_pm=0
if self.li_pm.__len__() == 0:
print("physical2")
self.pm_framecounts.append(self.cnt_pm)
break
if self.flag_cnt == False:
self.cnt_pm += 1
def deleteframes(self, team_id, file_name, contours, flag=True):
count = 0
plot_path = "team_id_" + str(self.num) + ".png"
circle_path = "team_id_" + str(self.num) + "circle.png"
# print(name)
cap = cv2.VideoCapture(file_name)
self.fps = cap.get(cv2.CAP_PROP_FPS)
while (cap.isOpened()):
# print("I am in deleteframes")
ret, image = cap.read()
if ret == False:
break
tl = 0
tr = 0
bl = 0
br = 0
tlx = 0
tly = 0
blx = 0
bly = 0
trix = 0
triy = 0
brx = 0
bry = 0
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
gray = clahe.apply(gray)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250)
parameters = aruco.DetectorParameters_create()
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters)
gray = aruco.drawDetectedMarkers(gray, corners, ids)
# cv2.imshow('frame', gray)
for a in corners:
tlx = a[0][0][0]
tly = a[0][0][1]
trix = a[0][1][0]
triy = a[0][1][1]
blx = a[0][3][0]
bly = a[0][3][1]
brx = a[0][2][0]
bry = a[0][2][1]
if ret == True and (tlx, tly, trix, triy, blx, bly, brx, bry) != (0, 0, 0, 0, 0, 0, 0, 0):
flag = True
if(hsvphysical!=None):
self.physical_marker(image)
warped_frame = self.warping(image, contours)
self.filter_top_of_robot(warped_frame)
elif (tlx, tly, trix, triy, blx, bly, brx, bry) == (0, 0, 0, 0, 0, 0, 0, 0):
if flag == True:
count += 1
print("count = " + str(count))
flag = False
# cv2.imshow("Original", image)
# cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()
listlen = self.list_white.__len__()
list_ones = self.list_white.count(1)
followaccuracy = (list_ones/listlen)*100
print("ACUURACY MEASURE",followaccuracy)
# print(name)
# print(name2)
# print("i am out of delete_frames")
# print(self.pm_framecounts)
# print(self.cnt_pm)
# print(fps)
if(hsvphysical==None):
tmarker1 = "N/A"
tmarker2 = "N/A"
else:
tmarker1 = self.pm_framecounts[0] / self.fps
tmarker2 = self.pm_framecounts[1] / self.fps
print("Physical mARKER 1 Point " + str(tmarker1))
print("Physical mARKER 2 Point " + str(tmarker2))
result = {'Team_ID': team_id, 'Plot Path':plot_path , 'Circle Path':circle_path ,'Handling Count': count,
"Physical Marker 1 Time":tmarker1, "Physical Marker 2 Time":tmarker2,
"Follow Accuracy":followaccuracy}
global result_dic
result_dic.append(result.copy())
# print(result)
# print(result_dic)
cv2.imwrite(plot_path, self.img)
cv2.imwrite(circle_path, self.circleimage)
##############################################################################################################################################################
##############################################################################################################################################################
def run(self):
print("in run")
(team_id, coordinates) = aruco_coordinates(self.file_name)
print("team_id" + str(team_id))
self.deleteframes(team_id, self.file_name, coordinates)
print("finished" + str(self.num))
path = folderpath
print(folderpath)
files = glob.glob(path + '*.mov' or '*.mp4')
print(files)
index=0
#print("Length"+str(files.__len__()))
for i in range(0,files.__len__()):
if i<3:
#print("hohi")
th.append(compute_frame(files[i],i))
th[i].start()
index=i
while True:
time.sleep(2)
for i in range(1):
if not(th[i].is_alive()):
print("thread"+str(i)+"is closed")
index+=1
if index<files.__len__():
th[i] = compute_frame(files[index],index)
else:
print("All files are in thread")
#print(threading.active_count())
if threading.active_count()==1:
return
#mainplot(os.path.join(os.getcwd(), "Results", "results_perfect.csv"),"/Users/siddharth/Desktop/EYSIP/NEW VIDS & RESULTS/videos/",0,3)