forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TheanoUtil.py
792 lines (690 loc) · 30.1 KB
/
TheanoUtil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import theano
import theano.sandbox.cuda
import theano.tensor as T
from theano.compile import ViewOp
from theano import gof
from theano.compile import optdb
import numpy
def time_batch_make_flat(val):
"""
:rtype val: theano.Variable
:rtype: theano.Variable
Will flatten the first two dimensions and leave the others as is.
"""
assert val.ndim > 1
s0 = val.shape[0] * val.shape[1]
newshape = [s0] + [val.shape[i] for i in range(2, val.ndim)]
return T.reshape(val,
newshape,
ndim=val.ndim - 1)
#name="flat_%s" % val.name)
def class_idx_seq_to_1_of_k(seq, num_classes, dtype="float32"):
"""
:param theano.Variable seq: ndarray with indices
:param int | theano.Variable num_classes: number of classes
:param str dtype: eg "float32"
:rtype: theano.Variable
:returns ndarray with one added dimension of size num_classes.
That is the one-hot-encoding.
This function is like theano.tensor.extra_ops.to_one_hot
but we can handle multiple dimensions.
"""
shape = [seq.shape[i] for i in range(seq.ndim)] + [num_classes]
eye = T.eye(num_classes, dtype=dtype)
m = eye[T.cast(seq, 'int32')].reshape(shape)
return m
def tiled_eye(n1, n2, dtype="float32"):
r1 = T.maximum((n1 - 1) / n2 + 1, 1)
r2 = T.maximum((n2 - 1) / n1 + 1, 1)
small_eye = T.eye(T.minimum(n1, n2), dtype=dtype)
tiled_big = T.tile(small_eye, (r1, r2))
tiled_part = tiled_big[:n1,:n2]
return tiled_part
def opt_contiguous_on_gpu(x):
if theano.sandbox.cuda.cuda_enabled:
return theano.sandbox.cuda.basic_ops.gpu_contiguous(x)
return x
def windowed_batch(source, window):
"""
:param theano.TensorVariable source: 3d tensor of shape (n_time, n_batch, n_dim)
:param int|theano.Variable window: window size
:return: tensor of shape (n_time, n_batch, window * n_dim)
"""
assert source.ndim == 3 # (time,batch,dim). not sure how to handle other cases
n_time = source.shape[0]
n_batch = source.shape[1]
n_dim = source.shape[2]
w_right = window // 2
w_left = window - w_right - 1
pad_left = T.zeros((w_left, n_batch, n_dim), dtype=source.dtype)
pad_right = T.zeros((w_right, n_batch, n_dim), dtype=source.dtype)
padded = T.concatenate([pad_left, source, pad_right], axis=0) # shape[0] == n_time + window - 1
tiled = T.tile(padded, (1, 1, window)) # shape[2] == n_dim * window
tiled_reshape = T.reshape(tiled, ((n_time + window - 1), n_batch, window, n_dim))
# We want to shift every dim*time block by one to the left.
# To do this, we interpret that we have one more time frame (i.e. n_time+window).
# We have to do some dimshuffling so that we get the right layout, then we can flatten,
# add some padding, and then dimshuffle it back.
# Then we can take out the first n_time frames.
tiled_dimshuffle = tiled_reshape.dimshuffle(2, 0, 1, 3) # (window,n_time+window-1,batch,dim)
tiled_flat = T.flatten(tiled_dimshuffle)
rem = n_batch * n_dim * window
tiled_flat_pad_right = T.concatenate([tiled_flat, T.zeros((rem,), dtype=source.dtype)])
tiled_reshape_shift = T.reshape(tiled_flat_pad_right, (window, n_time + window, n_batch, n_dim)) # add time frame
final_dimshuffle = tiled_reshape_shift.dimshuffle(1, 2, 0, 3) # (n_time+window,batch,window,dim)
final_sub = final_dimshuffle[:n_time] # (n_time,batch,window,dim)
final_concat_dim = final_sub.reshape((n_time, n_batch, window * n_dim))
return final_concat_dim
def delta_batch(source, window):
"""
:param theano.TensorVariable source: 3d tensor of shape (n_time, n_batch, n_dim)
:param int|theano.Variable window: window size
:return: tensor of shape (n_time, n_batch, window * n_dim)
Similar as numpy.diff. Also called delta.
TODO with conv op
"""
assert source.ndim == 3 # (time,batch,dim). not sure how to handle other cases
w = windowed_batch(source, window + 1)
return w[1:] - w[:-1]
def context_batched(source, window):
"""
same as windowed_batch but with window center at the end of the window
:param theano.TensorVariable source: 3d tensor of shape (n_time, n_batch, n_dim)
:param int|theano.Variable window: window size
:return: tensor of shape (n_time, n_batch, window * n_dim)
"""
assert source.ndim == 3 # (time,batch,dim). not sure how to handle other cases
n_time = source.shape[0]
n_batch = source.shape[1]
n_dim = source.shape[2]
w_left = window - 1
pad_left = T.zeros((w_left, n_batch, n_dim), dtype=source.dtype)
padded = T.concatenate([pad_left, source], axis=0) # shape[0] == n_time + window - 1
tiled = T.tile(padded, (1, 1, window)) # shape[2] == n_dim * window
tiled_reshape = T.reshape(tiled, ((n_time + window - 1), n_batch, window, n_dim))
# We want to shift every dim*time block by one to the left.
# To do this, we interpret that we have one more time frame (i.e. n_time+window).
# We have to do some dimshuffling so that we get the right layout, then we can flatten,
# add some padding, and then dimshuffle it back.
# Then we can take out the first n_time frames.
tiled_dimshuffle = tiled_reshape.dimshuffle(2, 0, 1, 3) # (window,n_time+window-1,batch,dim)
tiled_flat = T.flatten(tiled_dimshuffle)
rem = n_batch * n_dim * window
tiled_flat_pad_right = T.concatenate([tiled_flat, T.zeros((rem,), dtype=source.dtype)])
tiled_reshape_shift = T.reshape(tiled_flat_pad_right, (window, n_time + window, n_batch, n_dim)) # add time frame
final_dimshuffle = tiled_reshape_shift.dimshuffle(1, 2, 0, 3) # (n_time+window,batch,window,dim)
final_sub = final_dimshuffle[:n_time] # (n_time,batch,window,dim)
final_concat_dim = final_sub.reshape((n_time, n_batch, window * n_dim))
return final_concat_dim
def window_batch_timewise(t,b,w,full_index):
for i in range(w):
full_index = T.set_subtensor(full_index[i], T.roll(full_index[i], i))
if i > 0:
full_index = T.inc_subtensor(full_index[i], T.where(full_index[i] > 0, i * t * b - i, 0))
return full_index
def slice_for_axis(axis, s):
return (slice(None),) * axis + (s,)
def downsample(source, axis, factor, method="average"):
assert factor == int(factor), "factor is expected to be an int"
factor = int(factor)
# make shape[axis] a multiple of factor
src = source
source = source[slice_for_axis(axis=axis, s=slice(0, (source.shape[axis] // factor) * factor))]
# Add a temporary dimension as the factor.
added_dim_shape = [source.shape[i] for i in range(source.ndim)]
added_dim_shape = added_dim_shape[:axis] + [source.shape[axis] // factor, factor] + added_dim_shape[axis + 1:]
if method == "lstm":
assert axis == 0
return source
source = T.reshape(source, added_dim_shape)
if method == "average":
return T.mean(source, axis=axis + 1)
elif method == "max":
return T.max(source, axis=axis + 1)
elif method == "min":
return T.min(source, axis=axis + 1)
elif method == "concat" or method == 'mlp': # concatenates in last dimension
#return T.reshape(source, added_dim_shape[:axis+1] + added_dim_shape[axis+2:-1] + [added_dim_shape[-1] * factor])
return source.swapaxes(axis+1,src.ndim-1).reshape([source.shape[0],src.shape[1]] + [factor * source.shape[3]])
elif method == "batch":
assert axis == 0
return source.dimshuffle(1,0,2,3).reshape((source.shape[1],source.shape[0]*source.shape[2],source.shape[3]))
else:
assert False, "unknown downsample method %r" % method
def upsample(source, axis, factor, method="nearest-neighbor", target_axis_len=None):
if method == "nearest-neighbor":
assert factor == int(factor), "factor is expected to be an int. not implemented otherwise yet."
factor = int(factor)
target = T.repeat(source, factor, axis=axis)
if target_axis_len is not None:
# We expect that we need to add a few frames. Just use the last frame.
last = source[slice_for_axis(axis=axis, s=slice(-1, None))]
target = pad(target, axis=axis, target_axis_len=target_axis_len, pad_value=last)
return target
else:
assert False, "unknown upsample method %r" % method
def pad(source, axis, target_axis_len, pad_value=None):
if pad_value is None:
pad_value = T.zeros([source.shape[i] if i != axis else 1 for i in range(source.ndim)], dtype=source.dtype)
target_axis_len = T.cast(target_axis_len, dtype="int32")
num_missing = target_axis_len - source.shape[axis]
# There is some strange bug in Theano. If num_missing is 0, in some circumstances,
# it crashes with Floating point exception.
# Thus, do this workaround.
num_missing = T.maximum(num_missing, 1)
target = T.concatenate([source, T.repeat(pad_value, num_missing, axis=axis)], axis=axis)
# Because of the workaround, we need this.
target = target[slice_for_axis(axis=axis, s=slice(0, target_axis_len))]
return target
def chunked_time_reverse(source, chunk_size):
"""
:param source: >=1d array (time,...)
:param chunk_size: int
:return: like source
Will not reverse the whole time-dim, but only every time-chunk.
E.g. source=[0 1 2 3 4 5 6], chunk_size=3, returns [2 1 0 5 4 3 0].
(Padded with 0, recovers original size.)
"""
chunk_size = T.cast(chunk_size, dtype="int32")
num_chunks = (source.shape[0] + chunk_size - 1) // chunk_size
needed_time = num_chunks * chunk_size
remaining_dims = [source.shape[i + 1] for i in range(source.ndim - 1)]
padded_source = pad(source, axis=0, target_axis_len=needed_time)
reshaped = padded_source.reshape([num_chunks, chunk_size] + remaining_dims)
reshaped_rev = reshaped[:, ::-1]
rev_correct_ndim = reshaped_rev.reshape([needed_time] + remaining_dims)
return rev_correct_ndim[:source.shape[0]]
def try_register_canonicalize(f):
try:
return T.opt.register_canonicalize(f)
except ValueError as e:
print("try_register_canonicalize warning: %s" % e)
return f # just ignore
def try_register_gpu_opt(base_op_class):
def do_register_gpu_opt(f):
from theano.sandbox.cuda import cuda_available, register_opt
from theano.gof.opt import local_optimizer
f = local_optimizer([base_op_class])(f)
if cuda_available:
f = register_opt()(f)
return f # just ignore
return do_register_gpu_opt
class GradDiscardOutOfBound(ViewOp):
# See also theano.gradient.GradClip for a similar Op.
__props__ = ()
def __init__(self, lower_bound, upper_bound):
super(GradDiscardOutOfBound, self).__init__()
# We do not put those member in __eq__ or __hash__
# as they do not influence the perform of this op.
self.lower_bound = lower_bound
self.upper_bound = upper_bound
assert(self.lower_bound <= self.upper_bound)
def grad(self, args, g_outs):
return [T.switch(T.or_(T.lt(g_out, self.lower_bound), T.gt(g_out, self.upper_bound)),
T.cast(0, dtype=g_out.dtype),
g_out)
for g_out in g_outs]
def grad_discard_out_of_bound(x, lower_bound, upper_bound):
return GradDiscardOutOfBound(lower_bound, upper_bound)(x)
@try_register_canonicalize
@theano.gof.local_optimizer([GradDiscardOutOfBound])
def _local_grad_discard(node):
if isinstance(node.op, GradDiscardOutOfBound):
return node.inputs
def gaussian_filter_1d(x, sigma, axis, window_radius=40):
"""
Filter 1d input with a Gaussian using mode `nearest`.
x is expected to be 2D/3D of type (time,batch,...).
Adapted via: https://github.com/Theano/Theano/issues/3793
Original Author: https://github.com/matthias-k
"""
assert 2 <= x.ndim <= 3
assert 0 <= axis < x.ndim
# Construction of 1d kernel
filter_1d = T.arange(2*window_radius + 1) - window_radius
filter_1d = T.exp(-0.5*filter_1d**2/sigma**2)
filter_1d = filter_1d / filter_1d.sum()
filter_1d = filter_1d.astype(x.dtype) # 1D, window-dim
# transform `x` so that it is valid input for T.nnet.conv2d (batch size, stack size, nb row, nb col).
# first, axis 1 of `x` because that is the number of batches.
# then, a dummy stack size dim (not exactly sure about that. GpuDnnConv images and kernel must have the same stack size)
# at the end the axis where we want to apply the conv on.
# in between all remaining axes.
# e.g., if axis==0 and x.ndim==3, we should get [1, 'x', 2, 0]
blur_dims = [1] + ['x'] + [i for i in range(x.ndim) if i not in (1, axis)] + [axis]
while len(blur_dims) < 4:
blur_dims.insert(len(blur_dims) - 1, 'x')
assert len(blur_dims) == 4
blur_input = x.dimshuffle(blur_dims)
assert blur_input.ndim == 4
filter_W = filter_1d.dimshuffle(['x','x','x',0])
# Construction of filter pipeline
blur_input_start = blur_input[:, :, :, :1]
blur_input_start_padding = T.repeat(blur_input_start, window_radius, axis=3)
blur_input_end = blur_input[:, :, :, -1:]
blur_input_end_padding = T.repeat(blur_input_end, window_radius, axis=3)
padded_input = T.concatenate([blur_input_start_padding, blur_input, blur_input_end_padding], axis=3)
# padded_input supposed to be 4D (batch size, stack size, nb row, nb col).
# filter_W supposed to be 4D (nb filters, stack size, nb row, nb col).
blur_op = T.nnet.conv2d(padded_input, filter_W, border_mode='valid',
filter_shape=[1, 1, 1, (2*window_radius + 1) if isinstance(window_radius, int) else None])
# blur_op is 4D (batch size, nb filters, output row, output col).
# output row = stack size * nb row.
blur_op = blur_op[:, 0, :, :] # only one filter, remove dimension
# blur_op is 3D (batch size, output row, output col).
y = blur_op.dimshuffle({0:2,2:1}[axis], 0, {0:1,2:2}[axis])
if x.ndim == 2: y = y[:, :, 0]
assert x.ndim == y.ndim
return y
def log_sum_exp(x, axis):
x_max = T.max(x, axis=axis)
x_max_bc = T.makeKeepDims(x, x_max, axis=axis)
return T.log(T.sum(T.exp(x - x_max_bc), axis=axis)) + x_max
def max_filtered(x, axis, index):
index = T.cast(index, dtype="float32") # 2D, time*batch
index_bc = index.dimshuffle(*(range(index.ndim) + ['x'] * (x.ndim - index.ndim)))
x_min = T.min(x, axis=axis, keepdims=True)
x_filtered = x * index_bc + x_min * (numpy.float32(1) - index_bc)
assert x_filtered.ndim == x.ndim
x_max = T.max(x_filtered, axis=axis) # we ignore the out-of-index frames
return x_max
def log_sum_exp_index(x, axis, index):
index = T.cast(index, dtype="float32") # 2D, time*batch
index_bc = index.dimshuffle(*(range(index.ndim) + ['x'] * (x.ndim - index.ndim)))
assert index_bc.ndim == x.ndim
x_max = max_filtered(x, axis=axis, index=index) # we ignore the out-of-index frames
x_max_bc = T.makeKeepDims(x, x_max, axis=axis)
assert x.ndim == x_max_bc.ndim
x_shift = (x - x_max_bc) * index_bc # filter out out-of-index. exp() could be inf otherwise
return T.log(T.sum(T.exp(x_shift) * index_bc, axis=axis)) + x_max
def global_softmax(z, index, mode):
"""
:param theano.Variable z: 3D array. time*batch*feature
:param theano.Variable index: 2D array, 0 or 1, time*batch
:rtype: theano.Variable
:returns 3D array. exp(z) / Z, where Z = sum(exp(z),axis=[0,2]) / z.shape[0].
"""
assert z.ndim == 3
assert index.ndim == 2
index = T.cast(index, dtype="float32") # 2D, time*batch
index_bc = index.dimshuffle(0, 1, 'x')
times = T.sum(index, axis=0) # 1D, batch
assert times.ndim == 1
z_max2 = T.max(z, axis=2)
z_max2_bc = z_max2.dimshuffle(0, 1, 'x')
ez = T.exp(z - z_max2_bc)
Z_frame = T.sum(ez, axis=2) # 2D, time*batch
if mode == "local": # this is classic framewise softmax
Z_log_norm_bc = T.log(Z_frame).dimshuffle(0, 1, 'x') + z_max2_bc
elif mode == "log-norm":
Z_log_frame = T.log(Z_frame) + z_max2
Z_log_norm = T.sum(Z_log_frame * index, axis=0) / times # log-normalized. 1D, batch
Z_log_norm_bc = Z_log_norm.dimshuffle('x', 0, 'x') # 3D, time*batch*feature
elif mode == "maxshift-log-norm":
Z_log_frame = T.log(Z_frame)
Z_log_norm = T.sum(Z_log_frame * index, axis=0) / times # log-normalized. 1D, batch
Z_log_norm_bc = Z_log_norm.dimshuffle('x', 0, 'x') # 3D, time*batch*feature
Z_log_norm_bc = Z_log_norm_bc + z_max2_bc
elif mode == "std-norm":
#Z_log_norm = T.log( T.sum(T.exp(T.log(Z_frame) + z_max), axis=0) / times ) <- we want that
Z_log_frame = T.log(Z_frame) + z_max2
assert Z_log_frame.ndim == 2
Z_log_norm = log_sum_exp_index(Z_log_frame, index=index, axis=0) - T.log(times)
assert Z_log_norm.ndim == 1
Z_log_norm_bc = Z_log_norm.dimshuffle('x', 0, 'x') # 3D, time*batch*feature
elif mode == "maxshift-std-norm":
# We normalize each shifted frame.
Z_norm = T.sum(Z_frame * index, axis=0) / times # 1D, batch
assert Z_norm.ndim == 1
Z_log_norm = T.log(Z_norm)
Z_log_norm_bc = Z_log_norm.dimshuffle('x', 0, 'x') # 3D, time*batch*feature
Z_log_norm_bc = Z_log_norm_bc + z_max2_bc
elif mode.startswith("gauss-maxshift("):
modeend = mode.find(")-")
assert modeend >= 0
sigma = float(mode[len("gauss-maxshift("):modeend])
z_gmax2 = gaussian_filter_1d(z_max2, sigma=sigma, axis=0)
z_gmax2_bc = z_gmax2.dimshuffle(0, 1, 'x')
z = z - z_gmax2_bc
return global_softmax(z - z_gmax2_bc, mode=mode[modeend + 2:], index=index)
elif mode.startswith("gauss-std-norm("):
modeend = mode.find(")")
assert modeend >= 0 and modeend == len(mode) - 1
sigma = float(mode[len("gauss-std-norm("):modeend])
Z_log_frame = T.log(Z_frame) + z_max2
assert Z_log_frame.ndim == 2
Z_log_frame_g = gaussian_filter_1d(z_max2, sigma=sigma, axis=0)
Z_log_norm = log_sum_exp_index(Z_log_frame_g, index=index, axis=0) - T.log(times)
assert Z_log_norm.ndim == 1
Z_log_norm_bc = Z_log_norm.dimshuffle('x', 0, 'x') # 3D, time*batch*feature
else:
assert False, "invalid global_softmax mode %r" % mode
return T.exp(z - Z_log_norm_bc)
def show_global_softmax_stats(z):
"""
:param z: numpy.ndarray or Theano Var (eval-able), 2D time*features
"""
def stats(y): return numpy.min(y), numpy.max(y), numpy.mean(y), numpy.var(y)
if z.ndim == 3: z = z[:,0,:]
assert z.ndim == 2
z_numpy = z
z = T.as_tensor_variable(z)
if not isinstance(z, numpy.ndarray): z = z.eval()
print("show_global_softmax_stats for shape %s" % (z_numpy.shape,))
print(" z min/max/mean/var = %s" % (stats(z_numpy),))
z_max1 = numpy.max(z_numpy, axis=1)
print(" z max1 min/max/mean/var = %s" % (stats(z_max1),))
z_dmax1 = z_max1[:-1] - z_max1[1:]
print(" z dmax1 min/max/mean/var = %s" % (stats(z_dmax1),))
z_gmax1 = gaussian_filter_1d(T.as_tensor_variable(z_max1).dimshuffle(0, 'x'), sigma=10.0, axis=0).eval()[:,0]
print(" z gmax1 min/max/mean/var = %s" % (stats(z_gmax1),))
z_dgmax1 = z_gmax1[:-1] - z_gmax1[1:]
print(" z dgmax1 min/max/mean/var = %s" % (stats(z_dgmax1),))
z = T.cast(z, "float32") # we always expect this precision
z = z.dimshuffle(0, 'x', 1) # add batch-dim
index = T.ones((z.shape[0], 1))
for mode in ["local", "log-norm", "maxshift-log-norm", "std-norm", "maxshift-std-norm",
"gauss-maxshift(2.0)-std-norm", "gauss-maxshift(5.0)-std-norm", "gauss-maxshift(2.0)-log-norm",
"gauss-std-norm(2.0)", "gauss-std-norm(5.0)"]:
print(" mode %s" % mode)
y = global_softmax(z, index=index, mode=mode).eval()
assert y.ndim == 3 and y.shape[1] == 1
y = y[:,0,:]
print(" min/max/mean/var = %s" % (stats(y),))
log_y = numpy.log(y)
print(" log min/max/mean/var = %s" % (stats(log_y),))
y_sum1 = numpy.sum(y, axis=1)
print(" sum1 min/max/mean/var = %s" % (stats(y_sum1),))
log_y_sum1 = numpy.log(y_sum1)
print(" log sum1 min/max/mean/var = %s" % (stats(log_y_sum1),))
def complex_elemwise_mult(a, b, axis=-1):
assert a.ndim == b.ndim
if axis < 0: axis %= a.ndim
assert 0 <= axis < a.ndim
a_real = a[slice_for_axis(axis=axis, s=slice(0, a.shape[axis] / 2))]
a_imag = a[slice_for_axis(axis=axis, s=slice(a.shape[axis] / 2, None))]
b_real = b[slice_for_axis(axis=axis, s=slice(0, b.shape[axis] / 2))]
b_imag = b[slice_for_axis(axis=axis, s=slice(b.shape[axis] / 2, None))]
r_real = a_real * b_real - a_imag * b_imag
r_imag = a_real * b_imag + a_imag * b_real
return T.concatenate([r_real, r_imag], axis=axis)
def complex_bound(a, axis=-1):
# Via Associative LSTMs, http://arxiv.org/abs/1602.03032
if axis < 0: axis %= a.ndim
assert 0 <= axis < a.ndim
a_real = a[slice_for_axis(axis=axis, s=slice(0, a.shape[axis] / 2))]
a_imag = a[slice_for_axis(axis=axis, s=slice(a.shape[axis] / 2, None))]
d = T.maximum(numpy.float32(1), T.sqrt(a_real * a_real + a_imag * a_imag))
r_real = a_real / d
r_imag = a_imag / d
return T.concatenate([r_real, r_imag], axis=axis)
def complex_dot(a, b):
assert a.ndim >= 1
assert b.ndim >= 1
a_axis = a.ndim - 1
a_real = a[slice_for_axis(axis=a_axis, s=slice(0, a.shape[a_axis] / 2))]
a_imag = a[slice_for_axis(axis=a_axis, s=slice(a.shape[a_axis] / 2, None))]
b_axis = 0
b_real = b[slice_for_axis(axis=b_axis, s=slice(0, b.shape[b_axis] / 2))]
b_imag = b[slice_for_axis(axis=b_axis, s=slice(b.shape[b_axis] / 2, None))]
r_real = T.dot(a_real, b_real) - T.dot(a_imag, b_imag)
r_imag = T.dot(a_real, b_imag) + T.dot(a_imag, b_real)
r_axis = r_real.ndim - 1
return T.concatenate([r_real, r_imag], axis=r_axis)
def indices_in_flatten_array(ndim, shape, *args):
"""
We expect that all args can be broadcasted together.
So, if we have some array A with ndim&shape as given,
A[args] would give us a subtensor.
We return the indices so that A[args].flatten()
and A.flatten()[indices] are the same.
"""
assert ndim > 0
assert len(args) == ndim
indices_per_axis = [args[i] for i in range(ndim)]
for i in range(ndim):
for j in range(i + 1, ndim):
indices_per_axis[i] *= shape[j]
indices = indices_per_axis[0]
for i in range(1, ndim):
indices += indices_per_axis[i]
return indices
def circular_convolution(a, b):
from Device import is_using_gpu
has_gpuarray = is_using_gpu()
try:
import pygpu
except Exception:
has_gpuarray = False
if has_gpuarray:
from theano.gpuarray.fft import curfft as fft
from theano.gpuarray.fft import cuirfft as ifft
else:
from theano.tensor.fft import rfft as fft
from theano.tensor.fft import irfft as ifft
return ifft(fft(a) * fft(b))
def unroll_scan(fn, sequences=(), outputs_info=(), non_sequences=(), n_steps=None,
go_backwards=False):
"""
Helper function to unroll for loops. Can be used to unroll theano.scan.
The parameter names are identical to theano.scan, please refer to here
for more information.
Note that this function does not support the truncate_gradient
setting from theano.scan.
Code adapted from https://github.com/Lasagne/Lasagne.
Thank you!
Parameters
----------
fn : function
Function that defines calculations at each step.
sequences : TensorVariable or list of TensorVariables
List of TensorVariable with sequence data. The function iterates
over the first dimension of each TensorVariable.
outputs_info : list of TensorVariables
List of tensors specifying the initial values for each recurrent
value.
non_sequences: list of TensorVariables
List of theano.shared variables that are used in the step function.
n_steps: int
Number of steps to unroll.
go_backwards: bool
If true the recursion starts at sequences[-1] and iterates
backwards.
Returns
-------
Tuple of the form (outputs, updates).
outputs is a list of TensorVariables. Each element in the list gives the recurrent
values at each time step.
updates is an empty dict for now.
"""
if not isinstance(sequences, (list, tuple)):
sequences = [sequences]
sequences = list(sequences)
outputs_info = list(outputs_info)
non_sequences = list(non_sequences)
# When backwards reverse the recursion direction
counter = range(n_steps)
if go_backwards:
counter = counter[::-1]
output = []
prev_vals = outputs_info
until = []
for i in counter:
assert len(prev_vals) == len(outputs_info)
prev_vals = [prev for prev, out_info in zip(prev_vals, outputs_info) if out_info is not None]
step_input = [s[i] for s in sequences] + prev_vals + non_sequences
out_ = fn(*step_input)
# The returned values from step can be either a TensorVariable,
# a list, or a tuple. Below, we force it to always be a list.
if isinstance(out_, T.TensorVariable):
out_ = [out_]
if isinstance(out_, tuple):
if len(out_) >= 1 and isinstance(out_[0], (list, tuple)):
if len(out_) >= 2:
assert not out_[1], "shared var updates not supported"
if len(out_) >= 3:
assert isinstance(out_[2], theano.scan_module.until)
until.append(T.neq(out_[2].condition, 0))
out_ = list(out_[0])
else:
out_ = list(out_)
output.append(out_)
prev_vals = output[-1]
# iterate over each scan output and convert it to same format as scan:
# [[output11, output12,...output1n],
# [output21, output22,...output2n],...]
output_scan = []
for i in range(len(output[0])):
l = map(lambda x: x[i], output)
output_scan.append(T.stack(*l))
if until:
assert len(until) == n_steps
until_conds = T.stack(*until)
new_len = T.switch(T.any(until_conds),
T.minimum(T.argmax(until_conds) + 1, n_steps),
n_steps)
output_scan = [out[:new_len] for out in output_scan]
if len(output_scan) == 1:
output_scan = output_scan[0]
updates = {}
return output_scan, updates
def make_var_tuple(v):
if isinstance(v, theano.Variable):
return (v, )
if isinstance(v, list):
return tuple(v)
assert isinstance(v, tuple)
return v
class Contiguous(T.extra_ops.CpuContiguous):
# Original CpuContiguous is missing the grad.
# See https://github.com/Theano/Theano/issues/4399.
def grad(self, inputs, output_grads):
dout, = output_grads
dout = T.as_tensor_variable(dout)
return [dout]
@gof.local_optimizer([Contiguous], inplace=True)
def opt_remove_contiguous(node):
if isinstance(node.op, Contiguous):
x, = node.inputs
if x.owner and isinstance(x.owner.op, (T.Alloc, T.AllocEmpty, T.extra_ops.CpuContiguous)):
return [x]
return False
optdb.register('opt_remove_contiguous',
gof.TopoOptimizer(opt_remove_contiguous),
10, 'fast_run')
# Theano will not do this optimization. So we register it now.
# See: https://github.com/Theano/Theano/issues/4400
@try_register_gpu_opt(Contiguous)
def local_gpu_Contiguous(node):
if isinstance(node.op, Contiguous):
# see also: https://github.com/Theano/Theano/blob/master/theano/sandbox/cuda/opt.py
from theano.sandbox.cuda import host_from_gpu
x, = node.inputs
if x.owner and x.owner.op == host_from_gpu:
from theano.sandbox.cuda.basic_ops import gpu_contiguous
return [host_from_gpu(gpu_contiguous(x.owner.inputs[0]))]
class DumpOp(theano.Op):
__props__ = ("filename", "with_grad")
view_map = {0: [0]}
def __init__(self, filename, container=None, with_grad=True, parent=None, step=1):
super(DumpOp, self).__init__()
self.filename = filename
self.container = container
self.with_grad = with_grad
self.counter = 0
self.parent = parent
self.step = step
def make_node(self, x):
x = T.as_tensor_variable(x)
return gof.Apply(self, [x], [x.type()])
def perform(self, node, inputs, output_storage):
x, = inputs
self.dump(x)
output_storage[0][0] = x
def grad(self, inputs, output_grads):
dout, = output_grads
dout = T.as_tensor_variable(dout)
if self.with_grad:
# Note: This assumes that there will be only one such gradient.
dout = DumpOp(filename=self.filename + ".grad", container=self.container, parent=self, step=self.step)(dout)
return [dout]
def dump(self, x):
filename = self.get_full_filename()
if filename is not None:
if self.container is not None:
assert filename not in self.container
self.container[filename] = x.copy()
else:
import os, numpy
assert not os.path.exists(filename), "%s already exists, not overwriting" % filename
numpy.save(filename, x)
def get_full_filename(self):
counter = self.get_counter()
self.inc_counter()
if counter % self.step == 0:
return "%s.%i.npy" % (self.filename, counter)
else:
return None
def get_counter(self):
if self.parent: return self.parent.get_counter() - 1
return self.counter
def inc_counter(self):
if self.parent: return
self.counter += 1
def softmax(z):
dims = [z.shape[i] for i in range(z.ndim)]
collapsed_dim = numpy.prod(dims[:-1])
return T.nnet.softmax(z.reshape((collapsed_dim, dims[-1]))).reshape(dims)
def layer_normalization(x, bias=None, scale=None, eps=1e-5):
"""
Layer Normalization, https://arxiv.org/abs/1607.06450
x is mean and variance normalized along its feature dimension.
After that, we allow a bias and a rescale. This is supposed to be trainable.
:param x: 3d tensor (time,batch,dim) (or any ndim, last dim is expected to be dim)
:param bias: 1d tensor (dim) or None
:param scale: 1d tensor (dim) or None
"""
mean = T.mean(x, axis=x.ndim - 1, keepdims=True)
std = T.sqrt(T.var(x, axis=x.ndim - 1, keepdims=True) + numpy.float32(eps))
assert mean.ndim == std.ndim == x.ndim
output = (x - mean) / std
assert output.ndim == x.ndim
if scale is not None:
assert scale.ndim == 1
scale = scale.dimshuffle(*(('x',) * (x.ndim - 1) + (0,)))
assert scale.ndim == x.ndim
output = output * scale
if bias is not None:
assert bias.ndim == 1
bias = bias.dimshuffle(*(('x',) * (x.ndim - 1) + (0,)))
assert bias.ndim == x.ndim
output = output + bias
return output
def print_to_file(filename, x, argmax=None, sum=None, shape=False):
def theano_print_to_file(op,x):
with open(filename, 'a') as f:
if argmax is not None:
f.write(str(x.argmax(axis=argmax)) + '\n')
elif sum is not None:
f.write(str(x.sum(axis=sum)) + '\n')
elif shape:
f.write(str(x.shape) + '\n')
else:
#opt = numpy.get_printoptions()
#numpy.set_printoptions(threshold='nan')
f.write(str(x) + '\n')
#numpy.set_printoptions(opt)
return theano.printing.Print(global_fn=theano_print_to_file)(x)
def self_similarity_cosine(x):
"""
:param x: shape (T,D)
:returns cosine similarity matrix, shape (T,T), zeroed at diagonal and upper triangle
"""
assert x.ndim == 2
x2 = T.sqrt(T.clip(T.sum(T.sqr(x), axis=1), numpy.float32(1.e-20), numpy.float32(1.e20)))
assert x2.ndim == 1
x_ = x / x2.dimshuffle(0, 'x')
xx = T.dot(x_, x_.T)
assert xx.ndim == 2
from theano.tensor.basic import tril
return tril(xx, 1)