forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NetworkOutputLayer.py
1132 lines (1057 loc) · 56.5 KB
/
NetworkOutputLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy
import os
from theano import tensor as T
import theano
import theano.ifelse
from BestPathDecoder import BestPathDecodeOp
from TwoStateBestPathDecoder import TwoStateBestPathDecodeOp
from CTC import CTCOp
from TwoStateHMMOp import TwoStateHMMOp
from OpNumpyAlign import NumpyAlignOp
from NativeOp import FastBaumWelchOp, SegmentFastBaumWelchOp, MultiEndFastBaumWelchOp
from NetworkBaseLayer import Layer
from NetworkHiddenLayer import CAlignmentLayer
from SprintErrorSignals import sprint_loss_and_error_signal, SprintAlignmentAutomataOp
from Fsa import LoadWfstOp
from TheanoUtil import time_batch_make_flat, grad_discard_out_of_bound, DumpOp
from Util import as_str
from Log import log
class OutputLayer(Layer):
layer_class = "softmax"
def __init__(self, loss, y, dtype=None, reshape_target=False, copy_input=None, copy_output=None, time_limit=0,
use_source_index=False,
auto_fix_target_length=False,
sigmoid_outputs=False, exp_outputs=False, gauss_outputs=False, activation=None,
prior_scale=0.0, log_prior=None, use_label_priors=0,
compute_priors_via_baum_welch=False,
compute_priors=False, compute_priors_exp_average=0, compute_priors_accumulate_batches=None,
compute_distortions=False,
softmax_smoothing=1.0, grad_clip_z=None, grad_discard_out_of_bound_z=None, normalize_length=False,
exclude_labels=[], include_labels=[],
apply_softmax=True, batchwise_softmax=False,
substract_prior_from_output=False,
input_output_similarity=None,
input_output_similarity_scale=1,
scale_by_error=False,
copy_weights=False,
target_delay=0,
**kwargs):
"""
:param theano.Variable index: index for batches
:param str loss: e.g. 'ce'
"""
super(OutputLayer, self).__init__(**kwargs)
self.set_attr("normalize_length", normalize_length)
if dtype:
self.set_attr('dtype', dtype)
if copy_input:
self.set_attr("copy_input", copy_input.name)
if reshape_target:
self.set_attr("reshape_target",reshape_target)
if grad_clip_z is not None:
self.set_attr("grad_clip_z", grad_clip_z)
if compute_distortions:
self.set_attr("compute_distortions", compute_distortions)
if grad_discard_out_of_bound_z is not None:
self.set_attr("grad_discard_out_of_bound_z", grad_discard_out_of_bound_z)
if not apply_softmax:
self.set_attr("apply_softmax", apply_softmax)
if substract_prior_from_output:
self.set_attr("substract_prior_from_output", substract_prior_from_output)
if input_output_similarity:
self.set_attr("input_output_similarity", input_output_similarity)
self.set_attr("input_output_similarity_scale", input_output_similarity_scale)
if use_source_index:
self.set_attr("use_source_index", use_source_index)
src_index = self.sources[0].index
self.index = src_index
if not copy_input or copy_weights:
if copy_weights:
self.params = {}
self.b = self.add_param(copy_input.b)
self.W_in = [ self.add_param(W) for W in copy_input.W_in ]
self.masks = copy_input.masks
self.mass = copy_input.mass
else:
self.W_in = [self.add_param(self.create_forward_weights(source.attrs['n_out'], self.attrs['n_out'],
name="W_in_%s_%s" % (source.name, self.name)))
for source in self.sources]
self.z = self.b
assert len(self.sources) == len(self.masks) == len(self.W_in)
assert len(self.sources) > 0
for source, m, W in zip(self.sources, self.masks, self.W_in):
source_output = source.output
# 4D input from TwoD Layers -> collapse height dimension
if source_output.ndim == 4:
source_output = source_output.sum(axis=0)
if source.attrs['sparse']:
if source.output.ndim == 3:
input = source_output[:, :, 0] # old sparse format
else:
assert source_output.ndim == 2
input = source.output
self.z += W[T.cast(input, 'int32')]
elif m is None:
self.z += self.dot(source_output, W)
else:
self.z += self.dot(self.mass * m * source_output, W)
else:
self.params = {}
self.z = copy_input.output
assert self.z.ndim == 3
if grad_clip_z is not None:
grad_clip_z = numpy.float32(grad_clip_z)
self.z = theano.gradient.grad_clip(self.z, -grad_clip_z, grad_clip_z)
if grad_discard_out_of_bound_z is not None:
grad_discard_out_of_bound_z = numpy.float32(grad_discard_out_of_bound_z)
self.z = grad_discard_out_of_bound(self.z, -grad_discard_out_of_bound_z, grad_discard_out_of_bound_z)
if auto_fix_target_length:
self.set_attr("auto_fix_target_length", auto_fix_target_length)
source_index = self.sources[0].index
from TheanoUtil import pad
self.index = pad(source=self.index, axis=0, target_axis_len=source_index.shape[0])
if y is not None:
y = pad(source=y, axis=0, target_axis_len=source_index.shape[0])
if not copy_output:
self.y = y
self.norm = numpy.float32(1)
else:
if hasattr(copy_output, 'index_out'):
self.norm = T.sum(self.index, dtype='float32') / T.sum(copy_output.index_out, dtype='float32')
self.index = copy_output.index_out
else:
self.norm = T.sum(self.index, dtype='float32') / T.sum(copy_output.index, dtype='float32')
self.index = copy_output.index
self.y = y = copy_output.y_out
self.copy_output = copy_output
if y is None:
self.y_data_flat = None
elif isinstance(y, T.Variable):
if reshape_target:
if copy_output:
if isinstance(copy_output,CAlignmentLayer):
ind = copy_output.reduced_index.T.flatten()
self.y_data_flat = y.T.flatten()
self.y_data_flat = self.y_data_flat[(ind > 0).nonzero()]
self.index = T.ones((self.z.shape[0], self.z.shape[1]), 'int8')
else:
self.y_data_flat = time_batch_make_flat(y)
#self.y_data_flat = theano.printing.Print('ydataflat',attrs=['shape'])(self.y_data_flat)
else:
src_index = self.sources[0].index
self.index = src_index
self.y_data_flat = y.T.flatten()
self.y_data_flat = self.y_data_flat[(self.y_data_flat >= 0).nonzero()]
else:
self.y_data_flat = time_batch_make_flat(y)
else:
assert self.attrs.get("target", "").endswith("[sparse:coo]")
assert isinstance(self.y, tuple)
assert len(self.y) == 3
s0, s1, weight = self.y
from NativeOp import max_and_argmax_sparse
n_time = self.z.shape[0]
n_batch = self.z.shape[1]
mask = self.network.j[self.attrs.get("target", "").replace("[sparse:coo]", "[sparse:coo:2:0]")]
out_arg = T.zeros((n_time, n_batch), dtype="float32")
out_max = T.zeros((n_time, n_batch), dtype="float32") - numpy.float32(1e16)
out_arg, out_max = max_and_argmax_sparse(s0, s1, weight, mask, out_arg, out_max)
assert out_arg.ndim == 2
self.y_data_flat = out_arg.astype("int32")
self.target_index = self.index
if time_limit == 'inf':
num = T.cast(T.sum(self.index), 'float32')
if self.eval_flag:
self.index = self.sources[0].index
else:
padx = T.zeros((T.abs_(self.index.shape[0] - self.z.shape[0]), self.index.shape[1], self.z.shape[2]),
'float32') + self.z[-1]
pady = T.zeros((T.abs_(self.index.shape[0] - self.z.shape[0]), self.index.shape[1]), 'int32') # + y[-1]
padi = T.ones((T.abs_(self.index.shape[0] - self.z.shape[0]), self.index.shape[1]), 'int8')
self.z = theano.ifelse.ifelse(T.lt(self.z.shape[0], self.index.shape[0]),
T.concatenate([self.z, padx], axis=0), self.z)
self.y_data_flat = time_batch_make_flat(theano.ifelse.ifelse(T.gt(self.z.shape[0], self.index.shape[0]),
T.concatenate([y, pady], axis=0), y))
self.index = theano.ifelse.ifelse(T.gt(self.z.shape[0], self.index.shape[0]),
T.concatenate([padi, self.index], axis=0), self.index)
self.norm *= num / T.cast(T.sum(self.index), 'float32')
elif time_limit > 0:
end = T.min([self.z.shape[0], T.constant(time_limit, 'int32')])
num = T.cast(T.sum(self.index), 'float32')
self.index = T.set_subtensor(self.index[end:], T.zeros_like(self.index[end:]))
self.norm = num / T.cast(T.sum(self.index), 'float32')
self.z = T.set_subtensor(self.z[end:], T.zeros_like(self.z[end:]))
if target_delay > 0:
self.z = T.concatenate([self.z[target_delay:],self.z[-1].dimshuffle('x',0,1).repeat(target_delay,axis=0)],axis=0)
self.set_attr('from', ",".join([s.name for s in self.sources]))
index_flat = self.index.flatten()
assert not (exclude_labels and include_labels)
if include_labels:
exclude_labels = [ i for i in range(self.attrs['n_out']) if not i in include_labels ]
assert len(exclude_labels) < self.attrs['n_out']
for label in exclude_labels:
index_flat = T.set_subtensor(index_flat[(T.eq(self.y_data_flat, label) > 0).nonzero()], numpy.int8(0))
self.i = (index_flat > 0).nonzero()
self.j = ((numpy.int32(1) - index_flat) > 0).nonzero()
self.loss = as_str(loss.encode("utf8"))
self.attrs['loss'] = self.loss
if softmax_smoothing != 1.0:
self.attrs['softmax_smoothing'] = softmax_smoothing
print >> log.v4, "Logits before the softmax scaled with factor ", softmax_smoothing
self.z *= numpy.float32(softmax_smoothing)
if self.loss == 'priori':
self.priori = self.shared(value=numpy.ones((self.attrs['n_out'],), dtype=theano.config.floatX), borrow=True)
if input_output_similarity:
# First a self-similarity of input and output,
# and then add -similarity or distance between those to the constraints,
# so that the input and output correlate on a frame-by-frame basis.
# Here some other similarities/distances we could try:
# http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
# https://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients/
from TheanoUtil import self_similarity_cosine
self_similarity = self_similarity_cosine # maybe other
data_layer = self.find_data_layer()
assert data_layer
assert data_layer.output.ndim == 3
n_time = data_layer.output.shape[0]
n_batch = data_layer.output.shape[1]
findex = T.cast(self.output_index(), "float32")
findex_bc = findex.reshape((n_time * n_batch,)).dimshuffle(0, 'x')
findex_sum = T.sum(findex)
data = data_layer.output.reshape((n_time * n_batch, data_layer.output.shape[2])) * findex_bc
assert self.z.ndim == 3
z = self.z.reshape((n_time * n_batch, self.z.shape[2])) * findex_bc
data_self_sim = T.flatten(self_similarity(data))
z_self_sim = T.flatten(self_similarity(z))
assert data_self_sim.ndim == z_self_sim.ndim == 1
sim = T.dot(data_self_sim, z_self_sim) # maybe others make sense
assert sim.ndim == 0
# sim is ~ proportional to T * T, so divide by T.
sim *= numpy.float32(input_output_similarity_scale) / findex_sum
self.constraints -= sim
if sigmoid_outputs:
self.set_attr("sigmoid_outputs", sigmoid_outputs)
if exp_outputs:
self.set_attr("exp_outputs", exp_outputs)
if gauss_outputs:
self.set_attr("gauss_outputs", gauss_outputs)
if activation:
self.set_attr("activation", activation)
self.y_m = T.reshape(self.z, (self.z.shape[0] * self.z.shape[1], self.z.shape[2]), ndim=2)
if self.loss == 'sse' or not self.attrs.get("apply_softmax", True):
self.p_y_given_x = self.z
elif self.loss == 'sse_sigmoid':
self.p_y_given_x = T.nnet.sigmoid(self.z)
elif exp_outputs: # or not exp_normalize:
self.p_y_given_x = T.exp(self.z)
elif sigmoid_outputs:
self.p_y_given_x = T.nnet.sigmoid(self.z)
elif gauss_outputs:
self.p_y_given_x = T.exp(-T.sqr(self.z))
elif activation:
from ActivationFunctions import strtoact_single_joined
act_f = strtoact_single_joined(activation)
self.p_y_given_x = act_f(self.z)
elif batchwise_softmax:
n_frames = self.z.shape[0]
n_batches = self.z.shape[1]
n_features = self.z.shape[2]
y_m = T.switch(T.eq(self.index.reshape((n_frames, n_batches, 1)), 0), float('-inf'), self.z)
time_major = y_m.dimshuffle(1, 0, 2).reshape((n_batches, n_frames * n_features))
softmax = T.nnet.softmax(time_major)
self.p_y_given_x = softmax.reshape((n_batches, n_frames, n_features)).dimshuffle(1, 0, 2)
else: # standard case
self.p_y_given_x = T.reshape(T.nnet.softmax(self.y_m), self.z.shape)
if self.loss == "priori":
self.p_y_given_x /= self.priori
self.p_y_given_x_flat = T.reshape(self.p_y_given_x, self.y_m.shape)
self.y_pred = T.argmax(self.p_y_given_x_flat, axis=-1)
self.output = self.p_y_given_x
self.prior_scale = prior_scale
if prior_scale:
self.set_attr("prior_scale", prior_scale)
if log_prior is not None:
# We expect a filename to the priors, stored as txt, in +log space.
assert isinstance(log_prior, str)
self.set_attr("log_prior", log_prior)
from Util import load_txt_vector
assert os.path.exists(log_prior)
log_prior = load_txt_vector(log_prior)
assert len(log_prior) == self.attrs['n_out'], "dim missmatch: %i != %i" % (len(log_prior), self.attrs['n_out'])
log_prior = numpy.array(log_prior, dtype="float32")
self.log_prior = log_prior
if compute_priors_via_baum_welch:
self.set_attr("compute_priors_via_baum_welch", compute_priors_via_baum_welch)
assert compute_priors
if compute_priors:
self.set_attr('compute_priors', compute_priors)
if compute_priors_exp_average:
self.set_attr('compute_priors_exp_average', compute_priors_exp_average)
if compute_priors_accumulate_batches:
self.set_attr("compute_priors_accumulate_batches", compute_priors_accumulate_batches)
custom = T.mean(self.p_y_given_x_flat[(self.sources[0].index.flatten()>0).nonzero()], axis=0)
custom_init = numpy.ones((self.attrs['n_out'],), 'float32') / numpy.float32(self.attrs['n_out'])
if use_label_priors > 0: # use labels to compute priors in first epoch
self.set_attr("use_label_priors", use_label_priors)
custom_0 = T.mean(theano.tensor.extra_ops.to_one_hot(self.y_data_flat[self.i], self.attrs['n_out'], 'float32'),
axis=0)
custom = T.switch(T.le(self.network.epoch, use_label_priors), custom_0, custom)
self.priors = self.add_param(theano.shared(custom_init, 'priors'), 'priors',
custom_update=custom,
custom_update_normalized=not compute_priors_exp_average,
custom_update_exp_average=compute_priors_exp_average,
custom_update_accumulate_batches=compute_priors_accumulate_batches)
self.log_prior = T.log(T.maximum(self.priors, numpy.float32(1e-20)))
if self.attrs.get("substract_prior_from_output", False):
log_out = T.log(T.clip(self.output, numpy.float32(1.e-20), numpy.float(1.e20)))
prior_scale = numpy.float32(self.attrs.get("prior_scale", 1))
self.output = T.exp(log_out - self.log_prior * prior_scale)
self.p_y_given_x = self.output
self.p_y_given_x_flat = T.reshape(self.p_y_given_x, self.y_m.shape)
if self.attrs.get('compute_distortions', False):
p = self.p_y_given_x_flat[self.i]
momentum = p[:-1] * p[1:]
momentum = T.sum(momentum, axis=-1)
loop = T.mean(momentum)
forward = numpy.float32(1) - loop
self.distortions = {
'loop': self.add_param(theano.shared(numpy.ones((1,), 'float32') * numpy.float32(0.5), 'loop'), 'loop',
custom_update=loop,
custom_update_normalized=True),
'forward': self.add_param(theano.shared(numpy.ones((1,), 'float32') * numpy.float32(0.5), 'forward'), 'forward',
custom_update=forward,
custom_update_normalized=True)
}
self.cost_scale_val = T.constant(1)
if scale_by_error and self.train_flag:
rpcx = self.p_y_given_x_flat[T.arange(self.p_y_given_x_flat.shape[0]),self.y_data_flat]
#rpcx -= rpcx.min()
rpcx /= rpcx.max()
#weight = T.constant(1) - rpcx
#weight = (T.constant(1) - self.p_y_given_x_flat[T.arange(self.p_y_given_x_flat.shape[0]),self.y_data_flat])
#weight = weight.dimshuffle(0,'x').repeat(self.z.shape[2],axis=1).reshape(self.z.shape)
#weight = T.cast(T.neq(T.argmax(self.p_y_given_x_flat, axis=1), self.y_data_flat), 'float32').dimshuffle(0,'x').repeat(self.z.shape[2],axis=1).reshape(self.z.shape)
weight = T.cast(T.eq(T.argmax(self.p_y_given_x_flat, axis=1), self.y_data_flat), 'float32').dimshuffle(0,'x').repeat(self.z.shape[2], axis=1).reshape(self.z.shape)
self.p_y_given_x = T.exp(weight * T.log(self.p_y_given_x))
#self.z = self.p_y_given_x
self.p_y_given_x_flat = self.p_y_given_x.reshape((self.p_y_given_x.shape[0]*self.p_y_given_x.shape[1],self.p_y_given_x.shape[2]))
self.y_m = T.reshape(self.p_y_given_x, (self.p_y_given_x.shape[0] * self.p_y_given_x.shape[1], self.p_y_given_x.shape[2]), ndim=2)
def create_bias(self, n, prefix='b', name=""):
if not name:
name = "%s_%s" % (prefix, self.name)
assert n > 0
bias = numpy.log(1.0 / n) # More numerical stable.
value = numpy.zeros((n,), dtype=theano.config.floatX) + bias
return self.shared(value=value, borrow=True, name=name)
def entropy(self):
"""
:rtype: theano.Variable
"""
return -T.sum(self.p_y_given_x_flat[self.i] * T.log(self.p_y_given_x_flat[self.i]))
def errors(self):
"""
:rtype: theano.Variable
"""
if self.attrs.get("target", "") == "null":
return None
if self.loss in [ "sse", "entropy" ]:
return None
if self.y_data_flat.dtype.startswith('int'):
if self.y_data_flat.type == T.ivector().type:
if self.attrs['normalize_length']:
return self.norm * T.sum(
T.max(T.neq(T.argmax(self.output[:self.index.shape[0]], axis=2), self.y) * T.cast(self.index, 'float32'),
axis=0))
return self.norm * T.sum(T.neq(T.argmax(self.p_y_given_x_flat[self.i], axis=-1), self.y_data_flat[self.i]))
else:
return self.norm * T.sum(
T.neq(T.argmax(self.p_y_given_x_flat[self.i], axis=-1), T.argmax(self.y_data_flat[self.i], axis=-1)))
elif self.y_data_flat.dtype.startswith('float'):
return T.mean(T.sqr(self.p_y_given_x_flat[self.i] - self.y_data_flat.reshape(self.y_m.shape)[self.i]))
else:
raise NotImplementedError()
class FramewiseOutputLayer(OutputLayer):
def cost(self):
"""
:rtype: (theano.Variable | None, dict[theano.Variable,theano.Variable] | None)
:returns: cost, known_grads
"""
if self.loss == "none":
return None, None
known_grads = None
if not self.attrs.get("apply_softmax", True):
assert self.p_y_given_x_flat.ndim == 2 \
and self.y_data_flat.ndim == 2 # flattened
if self.loss == "ce":
index = T.cast(self.index, "float32").flatten()
index_bc = index.dimshuffle(0, 'x')
y_idx = self.y_data_flat
assert y_idx.ndim == 1
p = T.clip(self.p_y_given_x_flat, numpy.float32(1.e-38), numpy.float32(1.e20))
from NativeOp import subtensor_batched_index
logp = T.log(subtensor_batched_index(p, y_idx))
assert logp.ndim == 1
nll = -T.sum(logp * index)
# the grad for p is: -y_ref/p
known_grads = {
self.p_y_given_x_flat: -T.inv(p) * T.extra_ops.to_one_hot(self.y_data_flat, self.attrs["n_out"]) * index_bc}
return self.norm * nll, known_grads
elif self.loss == "sse":
netOutput = self.p_y_given_x_flat
groundTruth = self.y_data_flat
sseLoss = T.mean(
T.sum(
T.sqr(netOutput - groundTruth),
axis=(0,1)
)
)
return sseLoss, known_grads
else:
raise NotImplementedError
elif self.loss == 'ce' or self.loss == 'priori':
if self.attrs.get("target", "").endswith("[sparse:coo]"):
assert isinstance(self.y, tuple)
assert len(self.y) == 3
from NativeOp import crossentropy_softmax_and_gradient_z_sparse
y_mask = self.network.j[self.attrs.get("target", "").replace("[sparse:coo]", "[sparse:coo:2:0]")]
ce, grad_z = crossentropy_softmax_and_gradient_z_sparse(
self.z, self.index, self.y[0], self.y[1], self.y[2], y_mask)
return self.norm * T.sum(ce), {self.z: grad_z}
if self.y_data_flat.type == T.ivector().type:
# Use crossentropy_softmax_1hot to have a more stable and more optimized gradient calculation.
# Theano fails to use it automatically; I guess our self.i indexing is too confusing.
if self.attrs.get("auto_fix_target_length"):
from TheanoUtil import pad
xx = theano.ifelse.ifelse(T.lt(self.y_m[self.i].shape[0], 1), pad(self.y_m[self.i],0,1), self.y_m[self.i])
yy = theano.ifelse.ifelse(T.lt(self.y_m[self.i].shape[0], 1), pad(self.y_data_flat[self.i],0,1), self.y_data_flat[self.i])
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=xx, y_idx=yy)
else:
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=self.y_m[self.i], y_idx=self.y_data_flat[self.i])
else:
target = self.y_data_flat[self.i]
output = T.clip(self.p_y_given_x_flat[self.i], 1.e-38, 1.e20)
nll = -T.log(output) * target
self.norm *= self.p_y_given_x.shape[1] * T.inv(T.sum(self.index))
if self.attrs.get("auto_fix_target_length"):
return self.norm * theano.ifelse.ifelse(T.eq(self.index.sum(),0), 0.0, T.sum(nll)), known_grads
else:
return self.norm * T.sum(nll), known_grads
elif self.loss == 'entropy':
he = T.nnet.softmax(self.y_m[self.i]) # (TB)
ee = -T.sum(he * T.log(T.clip(he,numpy.float32(1e-6),numpy.float32(1.-1e-6))))
#q = numpy.float32(0.1)
#ee = (-T.sum(T.log(T.max(he,axis=1))) - q)**2
return ee, known_grads
pcx = T.clip((h_e / T.sum(h_e, axis=1, keepdims=True)).reshape(
(self.index.shape[0], self.index.shape[1], self.attrs['n_out'])), 1.e-6, 1.e6) # TBD
ee = -T.sum(pcx[self.i] * T.log(pcx[self.i])) # TB
return ee, known_grads
nll, _ = T.nnet.crossentropy_softmax_1hot(x=self.y_m, y_idx=self.y_data_flat) # TB
ce = nll.reshape(self.index.shape) * self.index # TB
y = self.y_data_flat.reshape(self.index.shape) * self.index # TB
f = T.any(T.gt(y, 0), axis=0) # B
return T.sum(f * T.sum(ce, axis=0) + (1 - f) * T.sum(ee, axis=0)), known_grads
elif self.loss == 'priori':
pcx = self.p_y_given_x_flat[self.i, self.y_data_flat[self.i]]
pcx = T.clip(pcx, 1.e-38, 1.e20) # For pcx near zero, the gradient will likely explode.
return -T.sum(T.log(pcx)), known_grads
elif self.loss == 'sse':
if self.y_data_flat.dtype.startswith('int'):
y_f = T.cast(T.reshape(self.y_data_flat, (self.y_data_flat.shape[0] * self.y_data_flat.shape[1]), ndim=1),
'int32')
y_oh = T.eq(T.shape_padleft(T.arange(self.attrs['n_out']), y_f.ndim), T.shape_padright(y_f, 1))
return T.mean(T.sqr(self.p_y_given_x_flat[self.i] - y_oh[self.i])), known_grads
else:
return T.sum(
T.mean(T.sqr(self.y_m[self.i] - self.y_data_flat.reshape(self.y_m.shape)[self.i]), axis=1)), known_grads
elif self.loss == 'sse_sigmoid':
return 1.0 / 2.0 * T.nnet.binary_crossentropy(T.clip(self.p_y_given_x_flat[self.i], 1.e-38, 1.0 - 1.e-5), self.y_data_flat[self.i]).mean(), known_grads
elif self.loss == 'sigmoid_binary_crossentropy':
from theano.tensor.extra_ops import to_one_hot
z_s = T.nnet.sigmoid(self.y_m)
self.y_s = z_s.reshape(self.z.shape)
return T.nnet.binary_crossentropy(T.clip(z_s, 1.e-5, 1 - 1.e-5)[self.i], to_one_hot(self.y_data_flat[self.i],self.attrs['n_out'])).sum(), known_grads
elif self.loss == "generic_ce":
# Should be generic for any activation function.
# (Except when the labels are not independent, such as for softmax.)
y = self.p_y_given_x # Can be anything, e.g. exp or sigmoid, but not softmax.
y /= T.sum(y, axis=2, keepdims=True)
nlog_scores = -T.log(T.clip(y, numpy.float32(1.e-20), numpy.float(1.e20)))
from TheanoUtil import class_idx_seq_to_1_of_k
y_idx = self.y
assert y_idx.ndim == 2
bw = class_idx_seq_to_1_of_k(y_idx, num_classes=self.attrs["n_out"])
assert bw.ndim == 3
err_inner = bw * nlog_scores
src_index = self.sources[0].index
float_idx = T.cast(src_index, "float32")
float_idx_bc = float_idx.dimshuffle(0, 1, 'x')
err = (err_inner * float_idx_bc).sum()
grad_f = T.grad(None, self.z, known_grads={T.log(self.p_y_given_x): T.ones(y.shape, y.dtype)})
known_grads = {self.z: grad_f * (y - bw) * float_idx_bc}
return err, known_grads
else:
assert False, "unknown loss: %s. maybe fix LayerNetwork.make_classifier" % self.loss
def cost_scale(self):
return self.cost_scale_val * T.constant(self.attrs.get("cost_scale", 1.0), dtype="float32")
class DecoderOutputLayer(FramewiseOutputLayer): # must be connected to a layer with self.W_lm_in
# layer_class = "decoder"
def __init__(self, **kwargs):
kwargs['loss'] = 'ce'
super(DecoderOutputLayer, self).__init__(**kwargs)
self.set_attr('loss', 'decode')
output = 0
self.y_s = []
for s in self.sources:
self.y_s.append(T.dot(s.output, s.W_lm_in) + s.b_lm_in)
output += self.y_s[-1]
self.params = {}
self.y_m = output.reshape((output.shape[0] * output.shape[1], output.shape[2]))
h = T.exp(self.y_m)
self.p_y_given_x = T.nnet.softmax(self.y_m)
self.y_pred = T.argmax(self.y_m[self.i], axis=1, keepdims=True)
self.output = self.p_y_given_x.reshape(self.output.shape)
def cost(self):
res = 0.0
for s in self.y_s:
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=s.reshape((s.shape[0] * s.shape[1], s.shape[2]))[self.i],
y_idx=self.y_data_flat[self.i])
res += T.sum(nll)
return res / float(len(self.y_s)), None
class SequenceOutputLayer(OutputLayer):
def __init__(self,
ce_smoothing=0.0, ce_target_layer_align=None,
am_scale=1, gamma=1, bw_norm_class_avg=False,
fast_bw_opts=None, seg_fast_bw_opts=None,
loss_like_ce=False, trained_softmax_prior=False,
sprint_opts=None, warp_ctc_lib=None,
**kwargs):
if fast_bw_opts is None: fast_bw_opts = {}
if seg_fast_bw_opts is None: seg_fast_bw_opts = {}
self._handle_old_kwargs(kwargs, fast_bw_opts=fast_bw_opts)
super(SequenceOutputLayer, self).__init__(**kwargs)
self.ce_smoothing = ce_smoothing
if ce_smoothing:
self.set_attr("ce_smoothing", ce_smoothing)
if ce_target_layer_align:
self.set_attr("ce_target_layer_align", ce_target_layer_align)
if fast_bw_opts:
if not isinstance(fast_bw_opts, dict):
import json
fast_bw_opts = json.loads(fast_bw_opts)
self.set_attr("fast_bw_opts", fast_bw_opts)
from Util import CollectionReadCheckCovered
self.fast_bw_opts = CollectionReadCheckCovered(fast_bw_opts or {})
if not isinstance(seg_fast_bw_opts, dict):
import json
seg_fast_bw_opts = json.loads(seg_fast_bw_opts)
self.set_attr("seg_fast_bw_opts", seg_fast_bw_opts)
self.seg_fast_bw_opts = seg_fast_bw_opts
if am_scale != 1:
self.set_attr("am_scale", am_scale)
if gamma != 1:
self.set_attr("gamma", gamma)
if bw_norm_class_avg:
self.set_attr("bw_norm_class_avg", bw_norm_class_avg)
self.loss_like_ce = loss_like_ce
if loss_like_ce:
self.set_attr("loss_like_ce", loss_like_ce)
if trained_softmax_prior:
self.set_attr('trained_softmax_prior', trained_softmax_prior)
assert not self.attrs.get('compute_priors', False)
initialization = numpy.zeros((self.attrs['n_out'],), 'float32')
if self.log_prior is not None:
# Will use that as initialization.
assert self.log_prior.shape == initialization.shape
initialization = self.log_prior
self.trained_softmax_prior_p = self.add_param(theano.shared(initialization, 'trained_softmax_prior_p'))
self.priors = T.nnet.softmax(self.trained_softmax_prior_p).reshape((self.attrs['n_out'],))
self.log_prior = T.log(self.priors)
if sprint_opts is not None:
if not isinstance(sprint_opts, dict):
import json
sprint_opts = json.loads(sprint_opts)
self.set_attr("sprint_opts", sprint_opts)
self.sprint_opts = sprint_opts
if warp_ctc_lib:
self.set_attr("warp_ctc_lib", warp_ctc_lib)
assert self.loss in (
'ctc', 'ce_ctc', 'hmm', 'ctc2', 'sprint', 'viterbi', 'fast_bw', 'seg_fast_bw', 'lf_mmi', 'ctc_warp', 'ctc_rasr', 'inv'), 'invalid loss: ' + self.loss
def _handle_old_kwargs(self, kwargs, fast_bw_opts):
if "loss_with_softmax_prob" in kwargs:
fast_bw_opts["loss_with_softmax_prob"] = kwargs.pop("loss_with_softmax_prob")
def index_for_ctc(self):
for source in self.sources:
if hasattr(source, "output_sizes"):
return T.cast(source.output_sizes[:, 1], "int32")
return T.cast(T.sum(T.cast(self.sources[0].index, 'int32'), axis=0), 'int32')
def output_index(self):
for source in self.sources:
if hasattr(source, "output_sizes"):
return source.index
if self.loss in ['viterbi', 'ctc', 'hmm', 'warp_ctc']:
return self.sources[0].index
return super(SequenceOutputLayer, self).output_index()
def cost(self):
"""
:param y: shape (time*batch,) -> label
:return: error scalar, known_grads dict
"""
known_grads = None
# In case that our target has another index, self.index will be that index.
# However, the right index for self.p_y_given_x and many others is the index from the source layers.
src_index = self.sources[0].index
float_idx = T.cast(src_index, "float32")
float_idx_bc = float_idx.dimshuffle(0, 1, 'x')
idx_sum = T.sum(float_idx)
if self.loss == 'sprint':
assert isinstance(self.sprint_opts, dict), "you need to specify sprint_opts in the output layer"
log_probs = T.log(self.p_y_given_x)
if self.prior_scale: # use own priors, assume prior scale in sprint config to be 0.0
assert self.log_prior is not None
log_probs -= numpy.float32(self.prior_scale) * self.log_prior
err, grad = sprint_loss_and_error_signal(
output_layer=self,
target=self.attrs.get("target", "classes"),
sprint_opts=self.sprint_opts,
log_posteriors=log_probs,
seq_lengths=T.sum(src_index, axis=0)
)
err = err.sum()
if self.loss_like_ce:
y_ref = T.clip(self.p_y_given_x - grad, numpy.float32(0), numpy.float32(1))
err = -T.sum(T.switch(T.cast(src_index, "float32").dimshuffle(0, 1, 'x'),
y_ref * T.log(self.p_y_given_x),
numpy.float32(0)))
if self.ce_smoothing:
err *= numpy.float32(1.0 - self.ce_smoothing)
grad *= numpy.float32(1.0 - self.ce_smoothing)
if not self.prior_scale: # we kept the softmax bias as it was
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=self.y_m[self.i], y_idx=self.y_data_flat[self.i])
else: # assume that we have subtracted the bias by the log priors beforehand
assert self.log_prior is not None
# In this case, for the CE calculation, we need to add the log priors again.
y_m_prior = T.reshape(self.z + numpy.float32(self.prior_scale) * self.log_prior,
(self.z.shape[0] * self.z.shape[1], self.z.shape[2]), ndim=2)
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=y_m_prior[self.i], y_idx=self.y_data_flat[self.i])
ce = numpy.float32(self.ce_smoothing) * T.sum(nll)
err += ce
grad += T.grad(ce, self.z)
known_grads = {self.z: grad}
return err, known_grads
elif self.loss == 'inv':
S = 5
N = self.index.shape[0]
B = self.index.shape[1]
ldx = self.y.dimshuffle('x', 0, 1).repeat(S, axis=0).reshape((N * S, B))
scores = -T.log(self.p_y_given_x) # TBC
#scores = theano.printing.Print("before", attrs=['shape'])(scores)
scores, _ = theano.scan(lambda y,x: x[:,T.arange(B),y],[ldx],non_sequences=[scores])
scores = scores.dimshuffle(0,2,1)
#scores = theano.printing.Print("after", attrs=['shape'])(scores)
index = self.index.dimshuffle('x', 0, 1).repeat(S, axis=0).reshape((N * S, B))
edges, weights, start_end_states, state_buffer = SprintAlignmentAutomataOp(self.sprint_opts)(self.network.tags)
#from TheanoUtil import print_to_file
#edges = theano.printing.Print("edges", attrs=['shape'])(edges)
#weights = theano.printing.Print("weights", attrs=['shape'])(weights)
fwdbwd, _ = FastBaumWelchOp().make_op()(scores, edges, weights, start_end_states, T.cast(index,'float32'), state_buffer)
def viterbi(op,x):
print(x.argmin(axis=-1))
#fwdbwd = theano.printing.Print(global_fn=viterbi)(fwdbwd)
#fwdbwd.argmin(axis=-1).flatten()
idx = (index.flatten() > 0).nonzero()
err = T.exp(-fwdbwd) * scores
return T.constant(1./S,dtype='float32') * T.sum(err.reshape((err.shape[0] * err.shape[1], err.shape[2]))[idx]), None
elif self.loss == 'ctc_rasr':
idx = (src_index.flatten() > 0).nonzero()
emissions = self.p_y_given_x
#if self.attrs.get('compute_priors', False):
# emissions = T.exp(T.log(emissions) - self.prior_scale * T.log(T.maximum(self.priors, 1e-10)))
scores = -T.log(emissions.reshape(self.z.shape))
edges, weights, start_end_states, state_buffer = SprintAlignmentAutomataOp(self.sprint_opts)(self.network.tags)
fwdbwd, _ = FastBaumWelchOp().make_op()(scores, edges, weights, start_end_states, float_idx, state_buffer)
err = T.exp(-fwdbwd) * scores
return T.sum(err.reshape((err.shape[0]*err.shape[1],err.shape[2]))[idx]), None
elif self.loss == 'fast_bw':
if self.fast_bw_opts.get("bw_from"):
out2 = self.fast_bw_opts.get("bw_from")
bw = self.network.output[out2].baumwelch_alignment
obs_scores = self.network.output[out2].obs_scores
else:
def get_am_scores(layer):
y = layer.p_y_given_x
assert y.ndim == 3
if layer.fast_bw_opts.get("merge_y_from"):
factor = layer.fast_bw_opts.get("merge_y_from_factor", 0.5)
out2 = layer.fast_bw_opts.get("merge_y_from")
y2 = layer.network.output[out2].p_y_given_x
y = numpy.float32(factor) * y2 + numpy.float32(1.0 - factor) * y
if layer.fast_bw_opts.get("y_gauss_blur_sigma"):
from TheanoUtil import gaussian_filter_1d
y = gaussian_filter_1d(y, axis=0,
sigma=numpy.float32(layer.fast_bw_opts["y_gauss_blur_sigma"]),
window_radius=int(layer.fast_bw_opts.get("y_gauss_blur_window", layer.fast_bw_opts["y_gauss_blur_sigma"])))
if layer.fast_bw_opts.get("y_lower_clip"):
y = T.maximum(y, numpy.float32(layer.fast_bw_opts.get("y_lower_clip")))
y = T.clip(y, numpy.float32(1.e-20), numpy.float(1.e20))
nlog_scores = -T.log(y) # in -log space
am_scores = nlog_scores
am_scale = layer.attrs.get("am_scale", 1)
if am_scale != 1:
am_scale = numpy.float32(am_scale)
am_scores *= am_scale
if layer.prior_scale and not layer.attrs.get("substract_prior_from_output", False):
assert layer.log_prior is not None
# Scores are in -log space, self.log_prior is in +log space.
# We want to subtract the prior, thus `-=`.
am_scores -= -layer.log_prior * numpy.float32(layer.prior_scale)
return am_scores
am_scores = get_am_scores(self)
if self.fast_bw_opts.get("merge_am_from"):
factor = self.fast_bw_opts.get("merge_am_from_factor", 0.5)
out2 = self.fast_bw_opts.get("merge_am_from")
am2 = get_am_scores(self.network.output[out2])
am_scores = numpy.float32(factor) * am2 + numpy.float32(1.0 - factor) * am_scores
if self.fast_bw_opts.get("fsa_source", "sprint") == "sprint":
assert isinstance(self.sprint_opts, dict), "you need to specify sprint_opts in the output layer"
edges, weights, start_end_states, state_buffer = SprintAlignmentAutomataOp(self.sprint_opts)(self.network.tags)
elif self.fast_bw_opts.get("fsa_source") == "ctc_from_uniq_y":
from Fsa import ctc_fsa_for_label_seq
num_lables = self.network.n_out[self.attrs["target"]][0]
assert self.attrs["n_out"] == num_lables + 1 # one added for blank
from Util import uniq
from theano.compile.ops import as_op # http://deeplearning.net/software/theano/extending/extending_theano.html#as-op
@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],
otypes=[theano.tensor.fmatrix]) # TODO...
def fsa_op(labels, index_mask):
"""
:param numpy.ndarray labels: (time,batch) -> label index
:param numpy.ndarray index_mask: shape (time,batch) -> 0 or 1
:return: (edges, weights, start_end_states) # TODO of shape...?
:rtype: (numpy.ndarray, numpy.ndarray, numpy.ndarray)
"""
assert index_mask.ndim == labels.ndim == 2
assert index_mask.shape == labels.shape
for batch in range(index_mask.shape[1]):
sub_labels = labels[:, batch][index_mask[:, batch].nonzero()]
sub_labels = uniq(sub_labels)
num_states, edges = ctc_fsa_for_label_seq(num_labels=num_lables, label_seq=sub_labels)
# TODO...
edges, weights, start_end_states = fsa_op(self.y, self.target_index)
state_buffer = T.zeros() # TODO...
elif self.fast_bw_opts.get("fsa_source") == "ctc_from_chars":
from Fsa import ctc_fsa_for_label_seq
num_lables = self.network.n_out[self.attrs["target"]][0]
assert self.attrs["n_out"] == num_lables + 1 # one added for blank
from Util import uniq
def get_seq_labels(seq_name):
pass # TODO... maybe from file? or corpus? or sprint?
from theano.compile.ops import \
as_op # http://deeplearning.net/software/theano/extending/extending_theano.html#as-op
@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],
otypes=[theano.tensor.fmatrix]) # TODO...
def fsa_op(tags):
"""
:param numpy.ndarray tags: seq names (frame,batch) ... TODO...
:return: (edges, weights, start_end_states) # TODO of shape...?
:rtype: (numpy.ndarray, numpy.ndarray, numpy.ndarray)
"""
assert tags.ndim == 2
for batch in range(tags.shape[1]):
labels = get_seq_labels(seq_name=tags[:, batch]) # TODO...?
num_states, edges = ctc_fsa_for_label_seq(num_labels=num_lables, label_seq=labels)
# TODO...
edges, weights, start_end_states = fsa_op(self.y, self.target_index)
state_buffer = T.zeros() # TODO...
else:
raise Exception("invalid fsa_source %r" % self.fast_bw_opts.get("fsa_source"))
fwdbwd, obs_scores = FastBaumWelchOp().make_op()(am_scores, edges, weights, start_end_states, float_idx, state_buffer)
gamma = self.attrs.get("gamma", 1)
need_renorm = False
if gamma != 1:
fwdbwd *= numpy.float32(gamma)
need_renorm = True
bw = T.exp(-fwdbwd)
if self.attrs.get("compute_priors_via_baum_welch", False):
assert self.priors.custom_update is not None
self.priors.custom_update = T.sum(bw * float_idx_bc, axis=(0, 1)) / idx_sum
if self.fast_bw_opts.get("bw_norm_class_avg"):
cavg = T.sum(bw * float_idx_bc, axis=(0, 1), keepdims=True) / idx_sum
bw /= T.clip(cavg, numpy.float32(1.e-20), numpy.float(1.e20))
need_renorm = True
if need_renorm:
bw /= T.clip(T.sum(bw, axis=2, keepdims=True), numpy.float32(1.e-20), numpy.float32(1.e20))
self.baumwelch_alignment = bw
self.obs_scores = obs_scores
if self.ce_smoothing > 0:
target_layer = self.attrs.get("ce_target_layer_align", None)
assert target_layer # we could also use self.y but so far we only want this
bw2 = self.network.output[target_layer].baumwelch_alignment
bw = numpy.float32(self.ce_smoothing) * bw2 + numpy.float32(1 - self.ce_smoothing) * bw
y = self.p_y_given_x
if self.fast_bw_opts.get("loss_with_softmax_prob"):
y = T.reshape(T.nnet.softmax(self.y_m), self.z.shape)
if self.fast_bw_opts.get("loss_with_sigmoid_prob"):
y = T.nnet.sigmoid(self.z)
if self.fast_bw_opts.get("loss_with_out_norm"):
y /= T.sum(y, axis=2, keepdims=True)
nlog_scores = -T.log(T.clip(y, numpy.float32(1.e-20), numpy.float(1.e20)))
err_inner = bw * nlog_scores
if self.fast_bw_opts.get("log_score_penalty"):
err_inner -= numpy.float32(self.fast_bw_opts["log_score_penalty"]) * nlog_scores
#idx = (src_index.flatten() > 0).nonzero()
#err = T.sum(err_inner.reshape((err_inner.shape[0]*err_inner.shape[1],err_inner.shape[2]))[idx])
# use the log-likelihood of the sequence as the error output
if self.fast_bw_opts.get("use_obs_score_as_error"):
err = (obs_scores * T.cast(self.index,'float32') / T.sum(self.index, axis=0, dtype='float32', keepdims=True)).sum()
else:
err = (err_inner * float_idx_bc).sum()
known_grads = {self.z: (y - bw) * float_idx_bc}
if self.fast_bw_opts.get("gauss_grad"):
known_grads[self.z] *= -2 * self.z
if self.fast_bw_opts.get("generic_act_grad"): # maybe use together with loss_with_out_norm
known_grads[self.z] *= T.grad(None, self.z, known_grads={T.log(self.p_y_given_x): T.ones(y.shape, y.dtype)})
if self.fast_bw_opts.get("no_explicit_z_grad"):
del known_grads[self.z]
if self.prior_scale and self.attrs.get('trained_softmax_prior', False):
bw_sum0 = T.sum(bw * float_idx_bc, axis=(0, 1))
assert bw_sum0.ndim == self.priors.ndim == 1
# Note that this is the other way around as usually (`bw - y` instead of `y - bw`).
# That is because the prior is in the denominator.
known_grads[self.trained_softmax_prior_p] = numpy.float32(self.prior_scale) * (bw_sum0 - self.priors * idx_sum)
self.fast_bw_opts.assert_all_read()
return err, known_grads
elif self.loss == 'seg_fast_bw':
from Fsa import BuildSimpleFsaOp
am_score_scales = self.seg_fast_bw_opts.get('am_score_scales', [1.0])
const_gradient_scale = self.seg_fast_bw_opts.get('const_gradient_scale', 1.0)
length_models = self.seg_fast_bw_opts.get('length_models', [])
scale_gradient = self.seg_fast_bw_opts.get('scale_gradient', False)
state_models = self.seg_fast_bw_opts.get('state_models', None)
# support for legacy parameters
if 'loop_emission_idxs' in self.seg_fast_bw_opts:
loop_emission_idxs = self.seg_fast_bw_opts.get('loop_emission_idxs', [])
loop_scores = self.seg_fast_bw_opts.get('loop_scores', (0.0, 0.0))
state_model = { leidx : ('loop', 1, loop_scores[0], loop_scores[1]) for leidx in loop_emission_idxs }
segment_layer = self.network.hidden[self.seg_fast_bw_opts['segment_layer']]
batch_idxs = segment_layer.batch_idxs
bw_args = { 'segmentwise_normalization' : self.seg_fast_bw_opts.get('segmentwise_normalization', False),
'dump_targets_interval' : self.seg_fast_bw_opts.get('dump_targets_interval', None) }
assert len(am_score_scales) > 0
edges, weights, start_end_states = BuildSimpleFsaOp(state_models)(self.y)
fwdbwd, _, pw = SegmentFastBaumWelchOp(**bw_args).make_op()(self.p_y_given_x, batch_idxs, edges, weights, start_end_states,
length_models, T.cast(segment_layer.index, 'float32'),
am_score_scales, self.network.epoch)
bw = T.exp(-fwdbwd)
self.y_data_flat = bw
nlog_scores = -T.log(T.clip(self.p_y_given_x, numpy.float32(1.e-20), numpy.float(1.e20)))
idx = segment_layer.index.reshape((bw.shape[0], bw.shape[1], 1))
err = bw * nlog_scores * idx
grad = (self.p_y_given_x - bw) * idx
if scale_gradient:
pw = T.clip(pw.reshape((pw.shape[0], pw.shape[1], 1)) * const_gradient_scale, 1.e-20, 1.0)
grad *= pw
err *= pw
err = err.sum()
known_grads = { self.z: grad }
return err, known_grads
elif self.loss == 'lf_mmi':
# Get AM scores for current utterances
am_scores = -T.log(self.p_y_given_x)
am_scale = self.attrs.get("am_scale", 1)
if am_scale != 1:
am_scale = numpy.float32(am_scale)
am_scores *= am_scale
# Get alignment FST for numerator
if self.fast_bw_opts.get("num_fsa_source", "sprint") == "sprint":
assert isinstance(self.sprint_opts, dict), "you need to specify sprint_opts in the output layer"
edges, weights, start_end_states, state_buffer = SprintAlignmentAutomataOp(self.sprint_opts)(self.network.tags)
else:
raise Exception("invalid fsa_source %r" % self.fast_bw_opts.get("fsa_source"))
# Calculate numerator part
fwdbwd, obs_scores = FastBaumWelchOp().make_op()(am_scores, edges, weights, start_end_states, float_idx, state_buffer)
self.baumwelch_alignment = T.exp(-fwdbwd)
self.num_scores = obs_scores
def loop_fkt(some_variable, seq_index, prev_fwdbwd, prev_scores):
# Get search FST for denominator
if self.fast_bw_opts.get("den_fsa_source", "file") == "file":
import os
assert isinstance(self.fast_bw_opts.get("den_fsa_file"), str) and os.path.exists(self.fast_bw_opts.get("den_fsa_file")),\
"you need to specify the path to the search FSA in den_fsa_file"
edges, weights, start_states, end_states, end_state_weigths, state_buffer = LoadWfstOp(self.fast_bw_opts.get("den_fsa_file"))(seq_index)
else:
raise Exception("invalid fsa_source %r" % self.fast_bw_opts.get("fsa_source"))
# Calculate denominator part
fwdbwd, obs_scores = MultiEndFastBaumWelchOp().make_op()(am_scores, edges, weights, start_states, end_states, end_state_weigths, float_idx, state_buffer)
return T.set_subtensor(prev_fwdbwd[:,seq_index,:], fwdbwd[:,seq_index,:]) , T.set_subtensor(prev_scores[:,seq_index], obs_scores[:,seq_index])
[foo,bar], scan_updates = theano.scan(fn=loop_fkt,
outputs_info=[T.zeros_like(fwdbwd),T.zeros_like(obs_scores)],
sequences=[am_scores[0],T.arange(1000)])
[fwdbwd, obs_scores] = [foo[-1],bar[-1]]
self.baumwelch_denominator =T.exp(-fwdbwd)
self.den_scores = obs_scores
# TODO: check weather loss is correct
err = ((self.num_scores - self.den_scores) * T.cast(self.index,'float32') / T.sum( T.cast(self.index,'float32'), axis=0, dtype='float32', keepdims=True)).sum()
if self.fast_bw_opts.get('numerator_smoothing') :
num = (1 - self.fast_bw_opts.get('numerator_smoothing')) * self.baumwelch_alignment + self.fast_bw_opts.get('numerator_smoothing') * T.extra_ops.to_one_hot(self.y_data_flat, self.baumwelch_alignment.shape[-1]).reshape(self.baumwelch_alignment.shape)
else:
num = self.baumwelch_alignment
grad = (self.baumwelch_denominator - num) * float_idx_bc
if self.ce_smoothing:
err *= numpy.float32(1.0 - self.ce_smoothing)
grad *= numpy.float32(1.0 - self.ce_smoothing)
if not self.prior_scale: # we kept the softmax bias as it was
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=self.y_m[self.i], y_idx=self.y_data_flat[self.i])
else: # assume that we have subtracted the bias by the log priors beforehand
assert self.log_prior is not None
# In this case, for the CE calculation, we need to add the log priors again.
y_m_prior = T.reshape(self.z + numpy.float32(self.prior_scale) * self.log_prior,
(self.z.shape[0] * self.z.shape[1], self.z.shape[2]), ndim=2)
nll, pcx = T.nnet.crossentropy_softmax_1hot(x=y_m_prior[self.i], y_idx=self.y_data_flat[self.i])
ce = numpy.float32(self.ce_smoothing) * T.sum(nll)
err += ce
grad += T.grad(ce, self.z)
return err, {self.z: grad }
elif self.loss == 'ctc':
from theano.tensor.extra_ops import cpu_contiguous
err, grad, priors = CTCOp()(self.p_y_given_x, cpu_contiguous(self.y.dimshuffle(1, 0)), self.index_for_ctc())
known_grads = {self.z: grad * numpy.float32(self.attrs.get('cost_scale', 1))}
return err.sum(), known_grads, priors.sum(axis=0)
elif self.loss == 'hmm':
from theano.tensor.extra_ops import cpu_contiguous
emissions = self.p_y_given_x
tdp_loop = T.as_tensor_variable(numpy.cast["float32"](0))
tdp_fwd = T.as_tensor_variable(numpy.cast["float32"](0))
if self.attrs.get('compute_priors', False):
emissions = T.exp(T.log(emissions) - self.prior_scale * T.log(T.maximum(self.priors,1e-10)))
if self.attrs.get('compute_distortions', False):
tdp_loop = T.as_tensor_variable(T.log(self.distortions['loop'][0]))
tdp_fwd = T.as_tensor_variable(T.log(self.distortions['forward'][0]))
err, grad, priors = TwoStateHMMOp()(emissions, cpu_contiguous(self.y.dimshuffle(1, 0)),
self.index_for_ctc(),tdp_loop,tdp_fwd)
known_grads = {self.z: grad * numpy.float32(self.attrs.get('cost_scale', 1))}
return err.sum(), known_grads, priors.sum(axis=0)
elif self.loss == 'warp_ctc':
import os
os.environ['CTC_LIB'] = self.attrs.get('warp_ctc_lib', "/usr/lib")
try:
from theano_ctc import ctc_cost
# from theano_ctc.cpu_ctc import CpuCtc