Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] Finite difference shape mismatch #551

Open
NolanBrb opened this issue Sep 2, 2024 · 3 comments
Open

[BUG] Finite difference shape mismatch #551

NolanBrb opened this issue Sep 2, 2024 · 3 comments

Comments

@NolanBrb
Copy link

NolanBrb commented Sep 2, 2024

When trying to run the basic examples found at https://pysindy.readthedocs.io/en/latest/examples/3_original_paper/example.html , I run into multiple errors. It seems that there are some issues with the finite difference code, with numpy functions called with arrays of the wrong shapes.

A first error occurs when np.linalg.solve(matrices, b) is called to compute finite differences coefficients. I fixed it by changing b for its transpose b.T. However, I run into a second error in the np.einsum() function.

Reproducing code example:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.cm import rainbow
import numpy as np
from scipy.integrate import solve_ivp
from scipy.io import loadmat
from pysindy.utils import linear_damped_SHO
from pysindy.utils import cubic_damped_SHO
from pysindy.utils import linear_3D
from pysindy.utils import hopf
from pysindy.utils import lorenz

import pysindy as ps

# ignore user warnings
import warnings
warnings.filterwarnings("ignore", category=UserWarning)

np.random.seed(1000)  # Seed for reproducibility

# Integrator keywords for solve_ivp
integrator_keywords = {}
integrator_keywords['rtol'] = 1e-12
integrator_keywords['method'] = 'LSODA'
integrator_keywords['atol'] = 1e-12

# Generate training data

dt = 0.01
t_train = np.arange(0, 25, dt)
t_train_span = (t_train[0], t_train[-1])
x0_train = [2, 0]
x_train = solve_ivp(linear_damped_SHO, t_train_span,
                    x0_train, t_eval=t_train, **integrator_keywords).y.T

# Fit the model

poly_order = 5
threshold = 0.05

model = ps.SINDy(
    optimizer=ps.STLSQ(threshold=threshold),
    feature_library=ps.PolynomialLibrary(degree=poly_order),
)
model.fit(x_train, t=dt)
model.print()

Error message #1


ValueError Traceback (most recent call last)
Cell In[1], line 45
39 threshold = 0.05
41 model = ps.SINDy(
42 optimizer=ps.STLSQ(threshold=threshold),
43 feature_library=ps.PolynomialLibrary(degree=poly_order),
44 )
---> 45 model.fit(x_train, t=dt)
46 model.print()

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\pysindy.py:246, in SINDy.fit(self, x, t, x_dot, u)
240 u = validate_control_variables(
241 x,
242 u,
243 trim_last_point=(self.discrete_time and x_dot is None),
244 )
245 self.n_control_features_ = u[0].shape[u[0].ax_coord]
--> 246 x, x_dot = self._process_trajectories(x, t, x_dot)
248 # Append control variables
249 if u is not None:

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\pysindy.py:491, in SINDy._process_trajectories(self, x, t, x_dot)
488 x = [xi[:-1] for xi in x]
489 else:
490 x, x_dot = zip(
--> 491 *[
492 self.feature_library.calc_trajectory(
493 self.differentiation_method, xi, ti
494 )
495 for xi, ti in _zip_like_sequence(x, t)
496 ]
497 )
498 return x, x_dot

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\pysindy.py:492, in (.0)
488 x = [xi[:-1] for xi in x]
489 else:
490 x, x_dot = zip(
491 *[
--> 492 self.feature_library.calc_trajectory(
493 self.differentiation_method, xi, ti
494 )
495 for xi, ti in _zip_like_sequence(x, t)
496 ]
497 )
498 return x, x_dot

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\feature_library\base.py:66, in BaseFeatureLibrary.calc_trajectory(self, diff_method, x, t)
65 def calc_trajectory(self, diff_method, x, t):
---> 66 x_dot = diff_method(x, t=t)
67 x = AxesArray(diff_method.smoothed_x_, x.axes)
68 return x, AxesArray(x_dot, x.axes)

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\differentiation\base.py:53, in BaseDifferentiation.call(self, x, t)
52 def call(self, x, t=1):
---> 53 return self._differentiate(x, t)

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\differentiation\finite_difference.py:278, in FiniteDifference._differentiate(self, x, t)
275 if not self.drop_endpoints:
276 # Forward differences on boundary
277 if not self.periodic:
--> 278 coeffs = self._coefficients_boundary_forward(t)
279 boundary = self._accumulate(coeffs, x)
281 if self.order % 2 == 0:

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\differentiation\finite_difference.py:148, in FiniteDifference._coefficients_boundary_forward(self, t)
146 b = np.zeros(self.stencil_inds.shape).T
147 b[:, self.d] = factorial(self.d)
--> 148 return np.linalg.solve(matrices, b)

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\numpy\linalg_linalg.py:413, in solve(a, b)
410 signature = 'DD->D' if isComplexType(t) else 'dd->d'
411 with errstate(call=_raise_linalgerror_singular, invalid='call',
412 over='ignore', divide='ignore', under='ignore'):
--> 413 r = gufunc(a, b, signature=signature)
415 return wrap(r.astype(result_t, copy=False))

ValueError: solve: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (m,m),(m,n)->(m,n) (size 2 is different from 3)

Fix for error #1 : replace all lines with np.linalg.solve(matrices, b) with np.linalg.solve(matrices, b.T)

Error message #2

AFTER replacing all np.linalg.solve(matrices, b) with np.linalg.solve(matrices, b.T), I get the following error


ValueError Traceback (most recent call last)
Cell In[13], line 45
39 threshold = 0.05
41 model = ps.SINDy(
42 optimizer=ps.STLSQ(threshold=threshold),
43 feature_library=ps.PolynomialLibrary(degree=poly_order),
44 )
---> 45 model.fit(x_train, t=dt)
46 model.print()

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\pysindy.py:246, in SINDy.fit(self, x, t, x_dot, u)
240 u = validate_control_variables(
241 x,
242 u,
243 trim_last_point=(self.discrete_time and x_dot is None),
244 )
245 self.n_control_features_ = u[0].shape[u[0].ax_coord]
--> 246 x, x_dot = self._process_trajectories(x, t, x_dot)
248 # Append control variables
249 if u is not None:

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\pysindy.py:491, in SINDy._process_trajectories(self, x, t, x_dot)
488 x = [xi[:-1] for xi in x]
489 else:
490 x, x_dot = zip(
--> 491 *[
492 self.feature_library.calc_trajectory(
493 self.differentiation_method, xi, ti
494 )
495 for xi, ti in _zip_like_sequence(x, t)
496 ]
497 )
498 return x, x_dot

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\pysindy.py:492, in (.0)
488 x = [xi[:-1] for xi in x]
489 else:
490 x, x_dot = zip(
491 *[
--> 492 self.feature_library.calc_trajectory(
493 self.differentiation_method, xi, ti
494 )
495 for xi, ti in _zip_like_sequence(x, t)
496 ]
497 )
498 return x, x_dot

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\feature_library\base.py:66, in BaseFeatureLibrary.calc_trajectory(self, diff_method, x, t)
65 def calc_trajectory(self, diff_method, x, t):
---> 66 x_dot = diff_method(x, t=t)
67 x = AxesArray(diff_method.smoothed_x_, x.axes)
68 return x, AxesArray(x_dot, x.axes)

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\differentiation\base.py:53, in BaseDifferentiation.call(self, x, t)
52 def call(self, x, t=1):
---> 53 return self._differentiate(x, t)

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\differentiation\finite_difference.py:279, in FiniteDifference._differentiate(self, x, t)
277 if not self.periodic:
278 coeffs = self._coefficients_boundary_forward(t)
--> 279 boundary = self._accumulate(coeffs, x)
281 if self.order % 2 == 0:
282 right_len = (self.n_stencil - 1) // 2

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\pysindy\differentiation\finite_difference.py:227, in FiniteDifference._accumulate(self, coeffs, x)
222 x = AxesArray(x, {"ax_unk": list(range(x.ndim))})
223 x_expanded = AxesArray(
224 np.transpose(x[tuple(s)], axes=trans), x.insert_axis(0, "ax_offset")
225 )
226 return np.transpose(
--> 227 np.einsum(
228 "ij...,ij->j...",
229 x_expanded,
230 np.transpose(coeffs),
231 ),
232 np.roll(np.arange(x.ndim), self.axis),
233 )

File c:\Users\nolan\miniconda3\envs\numerical-physics\Lib\site-packages\numpy_core\einsumfunc.py:1429, in einsum(out, optimize, *operands, **kwargs)
1427 if specified_out:
1428 kwargs['out'] = out
-> 1429 return c_einsum(*operands, **kwargs)
1431 # Check the kwargs to avoid a more cryptic error later, without having to
1432 # repeat default values here
1433 valid_einsum_kwargs = ['dtype', 'order', 'casting']

ValueError: operand has more dimensions than subscripts given in einstein sum, but no '...' ellipsis provided to broadcast the extra dimensions.

PySINDy/Python version information:

1.7.6.dev465+g69e51e8 3.11.2 | packaged by conda-forge | (main, Mar 31 2023, 17:45:57) [MSC v.1934 64 bit (AMD64)]

@chaitanya94
Copy link

chaitanya94 commented Sep 23, 2024

I had the same problem. I tried both the stable version 1.7.5 available from pip as well as compiling from source. The bug is present in both.

An easy way to reproduce the error is:

import numpy as np
import pysindy as ps

t = np.linspace(0, 1, 100)
x = 3 * np.exp(-2 * t)
y = 0.5 * np.exp(t)
X = np.stack((x, y), axis=-1)

model = ps.SINDy(feature_names=["x", "y"])
model.fit(X, t=t)

Solution
For pysindy version 1.7.5 the issue is resolved when I downgrade my numpy to version 1.26.4.

@Jacob-Stevens-Haas
Copy link
Member

Thanks @chaitanya94! @NolanBrb, can you report your numpy version?

@humatic
Copy link

humatic commented Oct 13, 2024

I'm experiencing the same issues.

  • Python 3.10
  • Numpy 2.0
  • Pysindy 1.7.5

I can confirm that downgrading numpy does the trick.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants