forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_hvd.py
140 lines (111 loc) · 5.08 KB
/
mnist_hvd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# https://aws.amazon.com/apache-2-0/
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from __future__ import print_function
import argparse
import math
import os
import horovod.tensorflow.keras as hvd
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
# import tensorflow.keras as keras
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
num_gpus = int(os.environ["SM_NUM_GPUS"])
parser = argparse.ArgumentParser()
# Data, model, and output directories. These are required.
parser.add_argument("--output-dir", type=str, default=os.environ["SM_OUTPUT_DIR"])
parser.add_argument("--model_dir", type=str)
parser.add_argument("--train", type=str, default=os.environ["SM_CHANNEL_TRAIN"])
parser.add_argument("--test", type=str, default=os.environ["SM_CHANNEL_TEST"])
args, _ = parser.parse_known_args()
# Horovod: initialize Horovod.
hvd.init()
# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))
batch_size = 128
num_classes = 10
# Horovod: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(12.0 / hvd.size()))
# Input image dimensions
img_rows, img_cols = 28, 28
# The data, shuffled and split between train and test sets
x_train = np.load(os.path.join(args.train, "train.npz"))["data"]
y_train = np.load(os.path.join(args.train, "train.npz"))["labels"]
print("Train dataset loaded from: {}".format(os.path.join(args.train, "train.npz")))
x_test = np.load(os.path.join(args.test, "test.npz"))["data"]
y_test = np.load(os.path.join(args.test, "test.npz"))["labels"]
print("Test dataset loaded from: {}".format(os.path.join(args.test, "test.npz")))
if K.image_data_format() == "channels_first":
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype("float32")
x_test = x_test.astype("float32")
x_train /= 255
x_test /= 255
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# Convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation="softmax"))
# Horovod: adjust learning rate based on number of GPUs.
opt = tf.keras.optimizers.Adadelta(1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(
loss=tf.keras.losses.categorical_crossentropy, optimizer=opt, metrics=["accuracy"]
)
callbacks = [
# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all workers when
# training is started with random weights or restored from a checkpoint.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]
# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:
callbacks.append(tf.keras.callbacks.ModelCheckpoint("./checkpoint-{epoch}.h5"))
model.fit(
x_train,
y_train,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
)
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
# Horovod: Save model only on worker 0 (i.e. master)
if hvd.rank() == 0:
model.save(os.path.join(args.model_dir, "model.h5"))