-
Notifications
You must be signed in to change notification settings - Fork 0
/
print_some_errors.py
624 lines (587 loc) · 25.8 KB
/
print_some_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import sys
# reload(sys)
# sys.setdefaultencoding("utf-8")
import json
import pickle
import os
import re
import subprocess
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
from gensim.models.keyedvectors import KeyedVectors
from nltk.tokenize import sent_tokenize
from pprint import pprint
bioclean = lambda t: re.sub('[.,?;*!%^&_+():-\[\]{}]', '', t.replace('"', '').replace('/', '').replace('\\', '').replace("'", '').strip().lower()).split()
def first_alpha_is_upper(sent):
specials = [
'__EU__','__SU__','__EMS__','__SMS__','__SI__',
'__ESB','__SSB__','__EB__','__SB__','__EI__',
'__EA__','__SA__','__SQ__','__EQ__','__EXTLINK',
'__XREF','__URI', '__EMAIL','__ARRAY','__TABLE',
'__FIG','__AWID','__FUNDS'
]
for special in specials:
sent = sent.replace(special,'')
for c in sent:
if(c.isalpha()):
if(c.isupper()):
return True
else:
return False
return False
def ends_with_special(sent):
sent = sent.lower()
ind = [item.end() for item in re.finditer('[\W\s]sp.|[\W\s]nos.|[\W\s]figs.|[\W\s]sp.[\W\s]no.|[\W\s][vols.|[\W\s]cv.|[\W\s]fig.|[\W\s]e.g.|[\W\s]et[\W\s]al.|[\W\s]i.e.|[\W\s]p.p.m.|[\W\s]cf.|[\W\s]n.a.', sent)]
if(len(ind)==0):
return False
else:
ind = max(ind)
if (len(sent) == ind):
return True
else:
return False
def split_sentences(text):
sents = [l.strip() for l in sent_tokenize(text)]
ret = []
i = 0
while (i < len(sents)):
sent = sents[i]
while (
((i + 1) < len(sents)) and
(
ends_with_special(sent) or
not first_alpha_is_upper(sents[i+1].strip())
# sent[-5:].count('.') > 1 or
# sents[i+1][:10].count('.')>1 or
# len(sent.split()) < 2 or
# len(sents[i+1].split()) < 2
)
):
sent += ' ' + sents[i + 1]
i += 1
ret.append(sent.replace('\n',' ').strip())
i += 1
return ret
def get_sents(ntext):
if(len(ntext.strip())>0):
sents = []
for subtext in ntext.split('\n'):
subtext = re.sub( '\s+', ' ', subtext.replace('\n',' ') ).strip()
if (len(subtext) > 0):
ss = split_sentences(subtext)
sents.extend([ s for s in ss if(len(s.strip())>0)])
if(len(sents[-1]) == 0 ):
sents = sents[:-1]
return sents
else:
return []
def RemoveTrainLargeYears(data, doc_text):
for i in range(len(data['queries'])):
hyear = 1900
for j in range(len(data['queries'][i]['retrieved_documents'])):
if data['queries'][i]['retrieved_documents'][j]['is_relevant']:
doc_id = data['queries'][i]['retrieved_documents'][j]['doc_id']
year = doc_text[doc_id]['publicationDate'].split('-')[0]
if year[:1] == '1' or year[:1] == '2':
if int(year) > hyear:
hyear = int(year)
j = 0
while True:
doc_id = data['queries'][i]['retrieved_documents'][j]['doc_id']
year = doc_text[doc_id]['publicationDate'].split('-')[0]
if (year[:1] == '1' or year[:1] == '2') and int(year) > hyear:
del data['queries'][i]['retrieved_documents'][j]
else:
j += 1
if j == len(data['queries'][i]['retrieved_documents']):
break
return data
def RemoveBadYears(data, doc_text, train):
for i in range(len(data['queries'])):
j = 0
while True:
doc_id = data['queries'][i]['retrieved_documents'][j]['doc_id']
year = doc_text[doc_id]['publicationDate'].split('-')[0]
##########################
# Skip 2017/2018 docs always. Skip 2016 docs for training.
# Need to change for final model - 2017 should be a train year only.
# Use only for testing.
if year == '2017' or year == '2018' or (train and year == '2016'):
#if year == '2018' or (train and year == '2017'):
del data['queries'][i]['retrieved_documents'][j]
else:
j += 1
##########################
if j == len(data['queries'][i]['retrieved_documents']):
break
return data
def print_params(model):
'''
It just prints the number of parameters in the model.
:param model: The pytorch model
:return: Nothing.
'''
print(40 * '=')
print(model)
print(40 * '=')
# logger.info(40 * '=')
# logger.info(model)
# logger.info(40 * '=')
trainable = 0
untrainable = 0
for parameter in model.parameters():
# print(parameter.size())
v = 1
for s in parameter.size():
v *= s
if(parameter.requires_grad):
trainable += v
else:
untrainable += v
total_params = trainable + untrainable
print(40 * '=')
print('trainable:{} untrainable:{} total:{}'.format(trainable, untrainable, total_params))
print(40 * '=')
# logger.info(40 * '=')
# logger.info('trainable:{} untrainable:{} total:{}'.format(trainable, untrainable, total_params))
# logger.info(40 * '=')
def dummy_test():
doc1_embeds = np.random.rand(40, 200)
doc2_embeds = np.random.rand(30, 200)
question_embeds = np.random.rand(20, 200)
q_idfs = np.random.rand(20, 1)
gaf = np.random.rand(4)
baf = np.random.rand(4)
for epoch in range(200):
optimizer.zero_grad()
cost_, doc1_emit_, doc2_emit_ = model(
doc1_embeds = doc1_embeds,
doc2_embeds = doc2_embeds,
question_embeds = question_embeds,
q_idfs = q_idfs,
gaf = gaf,
baf = baf
)
cost_.backward()
optimizer.step()
the_cost = cost_.cpu().item()
print(the_cost, float(doc1_emit_), float(doc2_emit_))
print(20 * '-')
def compute_the_cost(costs, back_prop=True):
cost_ = torch.stack(costs)
cost_ = cost_.sum() / (1.0 * cost_.size(0))
if(back_prop):
cost_.backward()
optimizer.step()
optimizer.zero_grad()
the_cost = cost_.cpu().item()
return the_cost
def save_checkpoint(epoch, model, max_dev_map, optimizer, filename='checkpoint.pth.tar'):
'''
:param state: the stete of the pytorch mode
:param filename: the name of the file in which we will store the model.
:return: Nothing. It just saves the model.
'''
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_valid_score': max_dev_map,
'optimizer': optimizer.state_dict(),
}
torch.save(state, filename)
def get_map_res(fgold, femit):
trec_eval_res = subprocess.Popen(['python', eval_path, fgold, femit], stdout=subprocess.PIPE, shell=False)
(out, err) = trec_eval_res.communicate()
lines = out.decode("utf-8").split('\n')
map_res = [l for l in lines if (l.startswith('map '))][0].split('\t')
map_res = float(map_res[-1])
return map_res
def tokenize(x):
return bioclean(x)
def idf_val(w):
if w in idf:
return idf[w]
return max_idf
def get_words(s):
sl = tokenize(s)
sl = [s for s in sl]
sl2 = [s for s in sl if idf_val(s) >= 2.0]
return sl, sl2
def get_embeds(tokens, wv):
ret1, ret2 = [], []
for tok in tokens:
if(tok in wv):
ret1.append(tok)
ret2.append(wv[tok])
return ret1, np.array(ret2, 'float64')
def load_idfs(idf_path, words):
print('Loading IDF tables')
# logger.info('Loading IDF tables')
# with open(dataloc + 'idf.pkl', 'rb') as f:
with open(idf_path, 'rb') as f:
idf = pickle.load(f)
ret = {}
for w in words:
if w in idf:
ret[w] = idf[w]
max_idf = 0.0
for w in idf:
if idf[w] > max_idf:
max_idf = idf[w]
idf = None
print('Loaded idf tables with max idf {}'.format(max_idf))
# logger.info('Loaded idf tables with max idf {}'.format(max_idf))
return ret, max_idf
def uwords(words):
uw = {}
for w in words:
uw[w] = 1
return [w for w in uw]
def ubigrams(words):
uw = {}
prevw = "<pw>"
for w in words:
uw[prevw + '_' + w] = 1
prevw = w
return [w for w in uw]
def query_doc_overlap(qwords, dwords):
# % Query words in doc.
qwords_in_doc = 0
idf_qwords_in_doc = 0.0
idf_qwords = 0.0
for qword in uwords(qwords):
idf_qwords += idf_val(qword)
for dword in uwords(dwords):
if qword == dword:
idf_qwords_in_doc += idf_val(qword)
qwords_in_doc += 1
break
if len(qwords) <= 0:
qwords_in_doc_val = 0.0
else:
qwords_in_doc_val = (float(qwords_in_doc) /
float(len(uwords(qwords))))
if idf_qwords <= 0.0:
idf_qwords_in_doc_val = 0.0
else:
idf_qwords_in_doc_val = float(idf_qwords_in_doc) / float(idf_qwords)
# % Query bigrams in doc.
qwords_bigrams_in_doc = 0
idf_qwords_bigrams_in_doc = 0.0
idf_bigrams = 0.0
for qword in ubigrams(qwords):
wrds = qword.split('_')
idf_bigrams += idf_val(wrds[0]) * idf_val(wrds[1])
for dword in ubigrams(dwords):
if qword == dword:
qwords_bigrams_in_doc += 1
idf_qwords_bigrams_in_doc += (idf_val(wrds[0]) * idf_val(wrds[1]))
break
if len(qwords) <= 0:
qwords_bigrams_in_doc_val = 0.0
else:
qwords_bigrams_in_doc_val = (float(qwords_bigrams_in_doc) / float(len(ubigrams(qwords))))
if idf_bigrams <= 0.0:
idf_qwords_bigrams_in_doc_val = 0.0
else:
idf_qwords_bigrams_in_doc_val = (float(idf_qwords_bigrams_in_doc) / float(idf_bigrams))
return [qwords_in_doc_val,
qwords_bigrams_in_doc_val,
idf_qwords_in_doc_val,
idf_qwords_bigrams_in_doc_val]
def GetScores(qtext, dtext, bm25):
qwords, qw2 = get_words(qtext)
dwords, dw2 = get_words(dtext)
qd1 = query_doc_overlap(qwords, dwords)
bm25 = [bm25]
return qd1[0:3] + bm25
def GetWords(data, doc_text, words):
for i in range(len(data['queries'])):
qwds = tokenize(data['queries'][i]['query_text'])
for w in qwds:
words[w] = 1
for j in range(len(data['queries'][i]['retrieved_documents'])):
doc_id = data['queries'][i]['retrieved_documents'][j]['doc_id']
dtext = (doc_text[doc_id]['title'] + ' <title> ' +
doc_text[doc_id]['abstractText'])
dwds = tokenize(dtext)
for w in dwds:
words[w] = 1
def load_all_data(dataloc, w2v_bin_path, idf_pickle_path):
print('loading pickle data')
# logger.info('loading pickle data')
with open(dataloc + 'bioasq_bm25_top100.test.pkl', 'rb') as f:
test_data = pickle.load(f)
with open(dataloc + 'bioasq_bm25_docset_top100.test.pkl', 'rb') as f:
test_docs = pickle.load(f)
with open(dataloc + 'bioasq_bm25_top100.dev.pkl', 'rb') as f:
dev_data = pickle.load(f)
with open(dataloc + 'bioasq_bm25_docset_top100.dev.pkl', 'rb') as f:
dev_docs = pickle.load(f)
with open(dataloc + 'bioasq_bm25_top100.train.pkl', 'rb') as f:
train_data = pickle.load(f)
with open(dataloc + 'bioasq_bm25_docset_top100.train.pkl', 'rb') as f:
train_docs = pickle.load(f)
print('loading words')
#
train_data = RemoveBadYears(train_data, train_docs, True)
train_data = RemoveTrainLargeYears(train_data, train_docs)
dev_data = RemoveBadYears(dev_data, dev_docs, False)
test_data = RemoveBadYears(test_data, test_docs, False)
#
words = {}
GetWords(train_data, train_docs, words)
GetWords(dev_data, dev_docs, words)
GetWords(test_data, test_docs, words)
print('loading idfs')
idf, max_idf = load_idfs(idf_pickle_path, words)
print('loading w2v')
wv = KeyedVectors.load_word2vec_format(w2v_bin_path, binary=True)
wv = dict([(word, wv[word]) for word in wv.vocab.keys() if(word in words)])
return test_data, test_docs, dev_data, dev_docs, train_data, train_docs, idf, max_idf, wv
def load_model_from_checkpoint(resume_from):
global start_epoch, optimizer
if os.path.isfile(resume_from):
print("=> loading checkpoint '{}'".format(resume_from))
checkpoint = torch.load(resume_from, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})".format(resume_from, checkpoint['epoch']))
def get_snips(quest_id, gid):
good_snips = []
if('snippets' in bioasq6_data[quest_id]):
for sn in bioasq6_data[quest_id]['snippets']:
if (sn['document'].endswith(gid)):
good_snips.extend(get_sents(sn['text']))
return list(set(good_snips))
class Sent_Posit_Drmm_Modeler(nn.Module):
def __init__(self, embedding_dim, k_for_maxpool, k_sent_maxpool):
super(Sent_Posit_Drmm_Modeler, self).__init__()
self.k = k_for_maxpool # k is for the average k pooling
self.k2 = k_sent_maxpool # k is for the average k pooling
#
self.embedding_dim = embedding_dim
self.trigram_conv = nn.Conv1d(self.embedding_dim, self.embedding_dim, 3, padding=2, bias=True)
self.trigram_conv_activation = torch.nn.LeakyReLU(negative_slope=0.1)
self.q_weights_mlp = nn.Linear(self.embedding_dim+1, 1, bias=True)
self.linear_per_q1 = nn.Linear(6, 8, bias=True)
self.my_relu1 = torch.nn.LeakyReLU(negative_slope=0.1)
self.linear_per_q2 = nn.Linear(8, 1, bias=True)
self.margin_loss = nn.MarginRankingLoss(margin=1.0)
self.out_layer = nn.Linear(4, 1, bias=True)
# self.final_layer = nn.Linear(self.k2, 1, bias=True)
# self.final_layer = nn.Linear(6, 1, bias=True)
self.final_layer = nn.Linear(5, 1, bias=True)
#
# self.init_xavier()
# self.init_using_value(0.1)
# MultiMarginLoss
# MarginRankingLoss
# my hinge loss
# MultiLabelMarginLoss
#
def init_xavier(self):
nn.init.xavier_uniform_(self.trigram_conv.weight)
nn.init.xavier_uniform_(self.q_weights_mlp.weight)
nn.init.xavier_uniform_(self.linear_per_q1.weight)
nn.init.xavier_uniform_(self.linear_per_q2.weight)
nn.init.xavier_uniform_(self.out_layer.weight)
def init_using_value(self, value):
self.trigram_conv.weight.data.fill_(value)
self.q_weights_mlp.weight.data.fill_(value)
self.linear_per_q1.weight.data.fill_(value)
self.linear_per_q2.weight.data.fill_(value)
self.out_layer.weight.data.fill_(value)
self.trigram_conv.bias.data.fill_(value)
self.q_weights_mlp.bias.data.fill_(value)
self.linear_per_q1.bias.data.fill_(value)
self.linear_per_q2.bias.data.fill_(value)
self.out_layer.weight.data.fill_(value)
self.final_layer.weight.data.fill_(value)
def min_max_norm(self, x):
minn = torch.min(x)
maxx = torch.max(x)
minmaxnorm = (x-minn) / (maxx - minn)
return minmaxnorm
def my_hinge_loss(self, positives, negatives, margin=1.0):
delta = negatives - positives
loss_q_pos = torch.sum(F.relu(margin + delta), dim=-1)
return loss_q_pos
def apply_convolution(self, the_input, the_filters, activation):
conv_res = the_filters(the_input.transpose(0,1).unsqueeze(0))
if(activation is not None):
conv_res = activation(conv_res)
pad = the_filters.padding[0]
ind_from = int(np.floor(pad/2.0))
ind_to = ind_from + the_input.size(0)
conv_res = conv_res[:, :, ind_from:ind_to]
conv_res = conv_res.transpose(1, 2)
conv_res = conv_res + the_input
return conv_res.squeeze(0)
def my_cosine_sim(self, A, B):
A = A.unsqueeze(0)
B = B.unsqueeze(0)
A_mag = torch.norm(A, 2, dim=2)
B_mag = torch.norm(B, 2, dim=2)
num = torch.bmm(A, B.transpose(-1,-2))
den = torch.bmm(A_mag.unsqueeze(-1), B_mag.unsqueeze(-1).transpose(-1,-2))
dist_mat = num / den
return dist_mat
def pooling_method(self, sim_matrix):
sorted_res = torch.sort(sim_matrix, -1)[0] # sort the input minimum to maximum
k_max_pooled = sorted_res[:,-self.k:] # select the last k of each instance in our data
average_k_max_pooled = k_max_pooled.sum(-1)/float(self.k) # average these k values
the_maximum = k_max_pooled[:, -1] # select the maximum value of each instance
the_concatenation = torch.stack([the_maximum, average_k_max_pooled], dim=-1) # concatenate maximum value and average of k-max values
return the_concatenation # return the concatenation
def get_output(self, input_list, weights):
temp = torch.cat(input_list, -1)
lo = self.linear_per_q1(temp)
lo = self.my_relu1(lo)
lo = self.linear_per_q2(lo)
lo = lo.squeeze(-1)
lo = lo * weights
sr = lo.sum(-1) / lo.size(-1)
return sr
def do_for_one_doc(self, doc_sents_embeds, sents_af, question_embeds, q_conv_res_trigram, q_weights):
res = []
for i in range(len(doc_sents_embeds)):
sent_embeds = autograd.Variable(torch.FloatTensor(doc_sents_embeds[i]), requires_grad=False)
gaf = autograd.Variable(torch.FloatTensor(sents_af[i]), requires_grad=False)
conv_res = self.apply_convolution(sent_embeds, self.trigram_conv, self.trigram_conv_activation)
#
sim_insens = self.my_cosine_sim(question_embeds, sent_embeds).squeeze(0)
sim_oh = (sim_insens > (1 - (1e-3))).float()
sim_sens = self.my_cosine_sim(q_conv_res_trigram, conv_res).squeeze(0)
#
insensitive_pooled = self.pooling_method(sim_insens)
sensitive_pooled = self.pooling_method(sim_sens)
oh_pooled = self.pooling_method(sim_oh)
#
sent_emit = self.get_output([oh_pooled, insensitive_pooled, sensitive_pooled], q_weights)
sent_add_feats = torch.cat([gaf, sent_emit.unsqueeze(-1)])
sent_out = self.out_layer(sent_add_feats)
res.append(sent_out)
res = torch.stack(res)
ret = self.get_max(res).unsqueeze(0)
return ret, res
def get_max_and_average_of_k_max(self, res, k):
sorted_res = torch.sort(res)[0]
k_max_pooled = sorted_res[-k:]
average_k_max_pooled = k_max_pooled.sum()/float(k)
the_maximum = k_max_pooled[-1]
# print(the_maximum)
# print(the_maximum.size())
# print(average_k_max_pooled)
# print(average_k_max_pooled.size())
the_concatenation = torch.cat([the_maximum, average_k_max_pooled.unsqueeze(0)])
return the_concatenation
def get_max(self, res):
return torch.max(res)
def get_kmax(self, res):
res = torch.sort(res,0)[0]
res = res[-self.k2:].squeeze(-1)
if(res.size()[0] < self.k2):
res = torch.cat([res, torch.zeros(self.k2 - res.size()[0])], -1)
return res
def get_average(self, res):
res = torch.sum(res) / float(res.size()[0])
return res
def get_maxmin_max(self, res):
res = self.min_max_norm(res)
res = torch.max(res)
return res
def emit_one(self, doc1_sents_embeds, question_embeds, q_idfs, sents_gaf, doc_gaf):
q_idfs = autograd.Variable(torch.FloatTensor(q_idfs), requires_grad=False)
question_embeds = autograd.Variable(torch.FloatTensor(question_embeds), requires_grad=False)
doc_gaf = autograd.Variable(torch.FloatTensor(doc_gaf), requires_grad=False)
q_conv_res_trigram = self.apply_convolution(question_embeds, self.trigram_conv, self.trigram_conv_activation)
q_weights = torch.cat([q_conv_res_trigram, q_idfs], -1)
q_weights = self.q_weights_mlp(q_weights).squeeze(-1)
q_weights = F.softmax(q_weights, dim=-1)
good_out, gs_emits = self.do_for_one_doc(doc1_sents_embeds, sents_gaf, question_embeds, q_conv_res_trigram, q_weights)
good_out_pp = torch.cat([good_out, doc_gaf], -1)
final_good_output = self.final_layer(good_out_pp)
return final_good_output, gs_emits
w2v_bin_path = '/home/dpappas/for_ryan/fordp/pubmed2018_w2v_30D.bin'
idf_pickle_path = '/home/dpappas/for_ryan/fordp/idf.pkl'
dataloc = '/home/dpappas/for_ryan/'
eval_path = '/home/dpappas/for_ryan/eval/run_eval.py'
k_for_maxpool = 5
k_sent_maxpool = 2
embedding_dim = 30
lr = 0.01
b_size = 32
with open(dataloc + 'BioASQ-trainingDataset6b.json', 'r') as f:
bioasq6_data = json.load(f)
bioasq6_data = dict((q['id'], q) for q in bioasq6_data['questions'])
test_data, test_docs, dev_data, dev_docs, train_data, train_docs, idf, max_idf, wv = load_all_data(dataloc=dataloc, w2v_bin_path=w2v_bin_path, idf_pickle_path=idf_pickle_path)
model = Sent_Posit_Drmm_Modeler(embedding_dim=embedding_dim, k_for_maxpool=k_for_maxpool, k_sent_maxpool=k_sent_maxpool)
params = model.parameters()
resume_from = '/home/dpappas/proper_pdrmm_gensim_sent_hinge_30_0p01_max_run0/best_checkpoint.pth.tar'
load_model_from_checkpoint(resume_from)
print_params(model)
model.eval()
print(model.final_layer.weight.data.tolist())
for dato in test_data['queries']:
quest_id = dato['query_id']
quest = dato['query_text']
quest_tokens, quest_embeds = get_embeds(tokenize(quest), wv)
q_idfs = np.array([[idf_val(qw)] for qw in quest_tokens], 'float')
emitions = {'body': dato['query_text'], 'id': dato['query_id'], 'documents': []}
bm25s = {t['doc_id']: t['norm_bm25_score'] for t in dato[u'retrieved_documents']}
# the_snippets = [get_sents(sn['text']) for sn in bioasq6_data[quest_id]['snippets']]
#
best_neg, worst_pos = None, None
for retr in dato['retrieved_documents']:
good_doc_text = test_docs[retr['doc_id']]['title'] + test_docs[retr['doc_id']]['abstractText']
good_doc_af = GetScores(quest, good_doc_text, bm25s[retr['doc_id']])
good_sents = get_sents(test_docs[retr['doc_id']]['title']) + get_sents(test_docs[retr['doc_id']]['abstractText'])
good_sents_embeds = []
good_sents_escores = []
#
good_snips = get_snips(quest_id, retr['doc_id'])
good_snips = [' '.join(bioclean(sn)) for sn in good_snips]
ssss, good_sent_tags = [], []
for good_text in good_sents:
good_tokens, good_embeds = get_embeds(tokenize(good_text), wv)
good_escores = GetScores(quest, good_text, bm25s[retr['doc_id']])[:-1]
if (len(good_embeds) > 0):
good_sents_embeds.append(good_embeds)
good_sents_escores.append(good_escores)
good_sent_tags.append(int((' '.join(bioclean(good_text)) in good_snips) or any([s in ' '.join(bioclean(good_text)) for s in good_snips])))
ssss.append(' '.join(good_tokens))
doc_emit_, gs_emits_ = model.emit_one(doc1_sents_embeds=good_sents_embeds, question_embeds=quest_embeds, q_idfs=q_idfs, sents_gaf=good_sents_escores, doc_gaf=good_doc_af)
emition = doc_emit_.cpu().item()
sent_emits = gs_emits_.squeeze(-1).cpu().tolist()
#
emit_inds = []
temp = sorted(sent_emits, reverse=True)
for se in sent_emits:
emit_inds.append(temp.index(se)+1)
#
if(retr['is_relevant']):
if(worst_pos is None or emition < worst_pos[0]):
worst_pos = [ emition, quest, ssss, sent_emits, good_sent_tags, good_snips, emit_inds, bm25s[retr['doc_id']]]
else:
if (best_neg is None or emition > best_neg[0]):
best_neg = [ emition, quest, ssss, sent_emits, good_sent_tags, good_snips, emit_inds, bm25s[retr['doc_id']]]
#
if(worst_pos is not None and best_neg is not None) and (worst_pos[0] < best_neg[0]):
print(worst_pos[0], worst_pos[7], quest_id)
print(' '.join(bioclean(worst_pos[1])))
pprint(worst_pos[5])
for i in range(len(worst_pos[2])):
souma = sum([int( tok in worst_pos[2][i].split()) for tok in bioclean(worst_pos[1]) ])
print('{:.4f}\t{}\t{}\t{}\t{}'.format(worst_pos[3][i], worst_pos[6][i], worst_pos[4][i], souma, worst_pos[2][i]))
print(40 * '-')
print(best_neg[0], best_neg[7], quest_id)
print(' '.join(bioclean(best_neg[1])))
pprint(best_neg[5])
for i in range(len(best_neg[2])):
souma = sum([int( tok in best_neg[2][i].split()) for tok in bioclean(best_neg[1]) ])
print('{:.4f}\t{}\t{}\t{}\t{}'.format(best_neg[3][i], best_neg[6][i], best_neg[4][i], souma, best_neg[2][i]))
print(40 * '#')
# good_sent_tags.append(int((good_text in good_snips) or any([s in good_text for s in good_snips])))