-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_pacrr_data.py
479 lines (462 loc) · 16.7 KB
/
generate_pacrr_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import re
import sys
import json
import pickle
import random
import operator
import argparse
from collections import Counter
from nltk.stem.snowball import SnowballStemmer
from tqdm import tqdm
from bioasq_utils import bioclean, map_term2ind, set_unk_tokens
random.seed(1234)
def get_idf_list(tokens):
idf_list = []
for t in tokens:
if t in idf:
idf_list.append(idf[t])
else:
idf_list.append(max_idf)
#
return idf_list
def bioasq_doc_processing(doc_dict, max_doc_len):
d_text = bioclean(doc_dict['title'] + ' ' + doc_dict['abstractText'])
d_text_unk = set_unk_tokens(d_text, term2ind)
d_text_inds = [term2ind[t] for t in d_text_unk][:max_doc_len]
return d_text_inds, d_text
def bioasq_query_processing(q_text, max_q_len):
q_text = bioclean(q_text)
q_text_unk = set_unk_tokens(q_text, term2ind)
#
if len(q_text_unk) > max_q_len:
tok_idf = []
for token in q_text_unk:
if token in idf:
tok_idf.append((token, idf[token]))
else:
tok_idf.append((token, max_idf))
tok_idf.sort(key=lambda tup: tup[1])
while len(q_text_unk) > max_q_len:
q_text_unk.remove(tok_idf[0][0])
tok_idf.pop(0)
#
q_text_inds = [term2ind[t] for t in q_text_unk][:max_q_len]
#
return q_text_inds, q_text
# To swsto!!!
def get_overlap_features_mode_1(q_tokens, d_tokens, q_idf):
# Map term to idf before set() change the term order
q_terms_idf = {}
for i in range(len(q_tokens)):
q_terms_idf[q_tokens[i]] = q_idf[i]
#
# Query Uni and Bi gram sets
query_uni_set = set()
query_bi_set = set()
for i in range(len(q_tokens) - 1):
query_uni_set.add(q_tokens[i])
query_bi_set.add((q_tokens[i], q_tokens[i + 1]))
query_uni_set.add(q_tokens[-1])
#
# Doc Uni and Bi gram sets
doc_uni_set = set()
doc_bi_set = set()
for i in range(len(d_tokens) - 1):
doc_uni_set.add(d_tokens[i])
doc_bi_set.add((d_tokens[i], d_tokens[i + 1]))
doc_uni_set.add(d_tokens[-1])
#
unigram_overlap = 0
idf_uni_overlap = 0
idf_uni_sum = 0
for ug in query_uni_set:
if ug in doc_uni_set:
unigram_overlap += 1
idf_uni_overlap += q_terms_idf[ug]
idf_uni_sum += q_terms_idf[ug]
unigram_overlap /= len(query_uni_set)
idf_uni_overlap /= idf_uni_sum
#
bigram_overlap = 0
for bg in query_bi_set:
if bg in doc_bi_set:
bigram_overlap += 1
bigram_overlap /= len(query_bi_set)
#
return [unigram_overlap, bigram_overlap, idf_uni_overlap]
def get_overlap_features_mode_2(q_tokens, d_tokens, q_idf):
# Map term to idf before set() change the term order
q_terms_idf = {}
for i in range(len(q_tokens)):
q_terms_idf[q_tokens[i]] = q_idf[i]
#
# Query Uni and Bi gram sets
query_uni_list = q_tokens
query_bi_list = []
for i in range(len(q_tokens) - 1):
query_bi_list.append((q_tokens[i], q_tokens[i + 1]))
#
# Doc Uni and Bi gram sets
doc_uni_list = []
doc_bi_list = []
for i in range(len(d_tokens) - 1):
doc_uni_list.append(d_tokens[i])
doc_bi_list.append((d_tokens[i], d_tokens[i + 1]))
doc_uni_list.append(d_tokens[-1])
#
doc_uni_counter = Counter(doc_uni_list)
doc_bi_counter = Counter(doc_bi_list)
#
unigram_overlap = 0
idf_uni_overlap = 0
idf_uni_sum = 0
for ug in query_uni_list:
if ug in doc_uni_counter:
unigram_overlap += doc_uni_counter[ug]
idf_uni_overlap += q_terms_idf[ug] * doc_uni_counter[ug]
idf_uni_sum += q_terms_idf[ug]
unigram_overlap /= len(query_uni_list)
idf_uni_overlap /= idf_uni_sum
#
bigram_overlap = 0
for bg in query_bi_list:
if bg in doc_bi_list:
bigram_overlap += doc_bi_counter[bg]
bigram_overlap /= len(query_bi_list)
#
return [unigram_overlap, bigram_overlap, idf_uni_overlap]
def get_overlap_features_mode_3(q_tokens, d_tokens, q_idf):
with open('../data/stopwords.pkl', 'rb') as f:
stopwords = set(pickle.load(f))
#
# stemmer = SnowballStemmer("english")
# q_tokens = [stemmer.stem(t) for t in q_tokens]
# d_tokens = [stemmer.stem(t) for t in d_tokens]
#
# Map term to idf before set() change the term order
q_terms_idf = {}
for i in range(len(q_tokens)):
q_terms_idf[q_tokens[i]] = q_idf[i]
# Query Uni and Bi gram sets
query_uni_list = [t for t in q_tokens if t not in stopwords]
query_bi_list = []
for i in range(len(q_tokens) - 1):
query_bi_list.append((q_tokens[i], q_tokens[i + 1]))
#
# Doc Uni and Bi gram sets
doc_uni_list = []
doc_bi_list = []
for i in range(len(d_tokens) - 1):
if d_tokens[i] not in stopwords:
doc_uni_list.append(d_tokens[i])
doc_bi_list.append((d_tokens[i], d_tokens[i + 1]))
doc_uni_list.append(d_tokens[-1])
#
doc_uni_counter = Counter(doc_uni_list)
doc_bi_counter = Counter(doc_bi_list)
#
unigram_overlap = 0
idf_uni_overlap = 0
idf_uni_sum = 0
for ug in query_uni_list:
if ug in doc_uni_counter:
unigram_overlap += doc_uni_counter[ug]
idf_uni_overlap += q_terms_idf[ug] * doc_uni_counter[ug]
idf_uni_sum += q_terms_idf[ug]
unigram_overlap /= len(query_uni_list)
idf_uni_overlap /= idf_uni_sum
#
bigram_overlap = 0
for bg in query_bi_list:
if bg in doc_bi_list:
bigram_overlap += doc_bi_counter[bg]
bigram_overlap /= len(query_bi_list)
#
return [unigram_overlap, bigram_overlap, idf_uni_overlap]
def get_overlap_features_mode_4(q_tokens, d_tokens, q_idf):
with open('../data/stopwords.pkl', 'rb') as f:
stopwords = set(pickle.load(f))
#
# Map term to idf before set() change the term order
q_terms_idf = {}
for i in range(len(q_tokens)):
q_terms_idf[q_tokens[i]] = q_idf[i]
#
# Query Uni and Bi gram sets
query_uni_set = set()
query_bi_set = set()
for i in range(len(q_tokens) - 1):
query_uni_set.add(q_tokens[i])
query_bi_set.add((q_tokens[i], q_tokens[i + 1]))
query_uni_set.add(q_tokens[-1])
#
# Doc Uni and Bi gram sets
doc_uni_set = set()
doc_bi_set = set()
for i in range(len(d_tokens) - 1):
if d_tokens[i] not in stopwords:
doc_uni_set.add(d_tokens[i])
doc_bi_set.add((d_tokens[i], d_tokens[i + 1]))
doc_uni_set.add(d_tokens[-1])
#
unigram_overlap = 0
idf_uni_overlap = 0
idf_uni_sum = 0
query_uni_set = set([t for t in query_uni_set if t not in stopwords])
for ug in query_uni_set:
if ug in doc_uni_set:
unigram_overlap += 1
idf_uni_overlap += q_terms_idf[ug]
idf_uni_sum += q_terms_idf[ug]
unigram_overlap /= len(query_uni_set)
idf_uni_overlap /= idf_uni_sum
#
bigram_overlap = 0
for bg in query_bi_set:
if bg in doc_bi_set:
bigram_overlap += 1
bigram_overlap /= len(query_bi_set)
#
return [unigram_overlap, bigram_overlap, idf_uni_overlap]
def produce_pos_neg_pairs(data, docset, max_year):
pairs_list = []
#
query_list = []
query_len_list = []
query_idf_list = []
#
pos_doc_list = []
neg_doc_list = []
#
pos_doc_bm25_list = []
neg_doc_bm25_list = []
#
pos_doc_normBM25_list = []
neg_doc_normBM25_list = []
#
pos_doc_overlap_list = []
neg_doc_overlap_list = []
#
for q in tqdm(data['queries']):
#
rel_ret_set = []
non_rel_set = []
#
rel_set = set(q['relevant_documents'])
for d in q['retrieved_documents']:
doc_id = d['doc_id']
if doc_id in rel_set:
rel_ret_set.append(d)
else:
non_rel_set.append(d)
#
query_inds, query_tokens = bioasq_query_processing(q['query_text'], 30)
query_idf = get_idf_list(query_tokens)
#
not_found_pos = 0
for pos_doc in rel_ret_set:
pos_doc_id = pos_doc['doc_id']
if pos_doc['doc_id'] not in docset:
not_found_pos += 1
continue
#
# Choose negative document published before 2016
found = False
tries = 0
if non_rel_set:
while not found and tries < len(non_rel_set):
neg_doc = random.choice(non_rel_set)
neg_doc_id = neg_doc['doc_id']
try:
pub_year = int(docset[neg_doc_id]['publicationDate'].split('-')[0])
except ValueError:
continue
found = (pub_year <= max_year)
tries += 1
if not found:
continue
#
pairs_list.append({'pos': pos_doc_id, 'neg': neg_doc_id})
#
pos_doc_inds, pos_doc_tokens = bioasq_doc_processing(docset[pos_doc_id], 300)
neg_doc_inds, neg_doc_tokens = bioasq_doc_processing(docset[neg_doc_id], 300)
#
pos_doc_BM25 = pos_doc['bm25_score']
neg_doc_BM25 = neg_doc['bm25_score']
#
pos_doc_normBM25 = pos_doc['norm_bm25_score']
neg_doc_normBM25 = neg_doc['norm_bm25_score']
#
pos_doc_overlap = get_overlap_features_mode_1(query_tokens, pos_doc_tokens, query_idf)
neg_doc_overlap = get_overlap_features_mode_1(query_tokens, neg_doc_tokens, query_idf)
#
query_list.append(query_inds)
query_len_list.append(len(query_inds))
query_idf_list.append(query_idf)
#
pos_doc_list.append(pos_doc_inds)
pos_doc_bm25_list.append(pos_doc_BM25)
pos_doc_normBM25_list.append(pos_doc_normBM25)
pos_doc_overlap_list.append(pos_doc_overlap)
#
neg_doc_list.append(neg_doc_inds)
neg_doc_bm25_list.append(neg_doc_BM25)
neg_doc_normBM25_list.append(neg_doc_normBM25)
neg_doc_overlap_list.append(neg_doc_overlap)
#
if not_found_pos > 0:
print('{0} relevant documents are not in the docset.'.format(not_found_pos))
#
pairs_data = {
'queries': query_list,
'queries_len': query_len_list,
'queries_idf': query_idf_list,
'pos_docs': pos_doc_list,
'neg_docs': neg_doc_list,
'pos_docs_BM25': pos_doc_bm25_list,
'pos_docs_normBM25': pos_doc_normBM25_list,
'pos_docs_overlap': pos_doc_overlap_list,
'neg_docs_BM25': neg_doc_bm25_list,
'neg_docs_normBM25': neg_doc_normBM25_list,
'neg_docs_overlap': neg_doc_overlap_list,
'pairs': pairs_list,
'num_pairs': len(pairs_list)
}
#
return pairs_data
def produce_reranking_inputs(data, docset, max_year):
query_data_list = []
for q in tqdm(data['queries']):
query_data = {}
#
q_id = q['query_id']
query_inds, query_tokens = bioasq_query_processing(q['query_text'], 30)
query_idf = get_idf_list(query_tokens)
#
doc_id_list = []
doc_list = []
doc_BM25_list = []
doc_norm_BM25_list = []
doc_overlap_list = []
for doc in q['retrieved_documents']:
#
# Discard document if published after 2016
try:
pub_year = int(docset[doc['doc_id']]['publicationDate'].split('-')[0])
except ValueError:
continue
if pub_year > max_year:
continue
#
doc_inds, doc_tokens = bioasq_doc_processing(docset[doc['doc_id']], 300)
doc_BM25 = doc['bm25_score']
doc_normBM25 = doc['norm_bm25_score']
doc_overlap = get_overlap_features_mode_1(query_tokens, doc_tokens, query_idf)
#
doc_id_list.append(doc['doc_id'])
doc_list.append(doc_inds)
doc_BM25_list.append(doc_BM25)
doc_norm_BM25_list.append(doc_normBM25)
doc_overlap_list.append(doc_overlap)
#
query_data['id'] = q_id
query_data['token_inds'] = query_inds
query_data['query_len'] = len(query_inds)
query_data['idf'] = query_idf
query_data['retrieved_samples'] = {
'documents': doc_id_list,
'doc_list': doc_list,
'doc_BM25': doc_BM25_list,
'doc_normBM25': doc_norm_BM25_list,
'doc_overlap': doc_overlap_list,
'n_ret_docs': len(doc_id_list)
}
#
query_data_list.append(query_data)
#
return query_data_list
if __name__ == '__main__':
topk = 100
#
ind = sys.argv.index('-config')
config_file = sys.argv[ind + 1]
parser = argparse.ArgumentParser()
parser.add_argument('-config', dest='config_file')
args = parser.parse_args()
print(args.config_file)
#
with open(args.config_file, 'r') as f:
config = json.load(f)
#
data_directory = ''
#
bm25_data_path_train = data_directory + 'data/bioasq6_bm25_top{0}/bioasq6_bm25_top{0}.train.pkl'.format(topk, topk)
docset_path_train = data_directory + 'data/bioasq6_bm25_top{0}/bioasq6_bm25_docset_top{0}.train.pkl'.format(topk, topk)
#
bm25_data_path_dev = data_directory + 'data/bioasq6_bm25_top{0}/bioasq6_bm25_top{0}.dev.pkl'.format(topk, topk)
docset_path_dev = data_directory + 'data/bioasq6_bm25_top{0}/bioasq6_bm25_docset_top{0}.dev.pkl'.format(topk, topk)
#
w2v_path = config['WORD_EMBEDDINGS_FILE']
term2ind_path = config['TERM_TO_IND']
idf_path = config['IDF_FILE']
#
with open(bm25_data_path_train, 'rb') as f:
data_train = pickle.load(f)
#
with open(docset_path_train, 'rb') as f:
docset_train = pickle.load(f)
#
with open(bm25_data_path_dev, 'rb') as f:
data_dev = pickle.load(f)
#
with open(docset_path_dev, 'rb') as f:
docset_dev = pickle.load(f)
#
with open(idf_path, 'rb') as f:
idf = pickle.load(f)
#
print('All data loaded. Pairs generation started..')
#
max_idf = max(idf.items(), key=operator.itemgetter(1))[1]
#
term2ind = map_term2ind(w2v_path)
with open(config['TERM_TO_IND'], 'wb') as f:
pickle.dump(term2ind, f)
#
# ===================================================================
# ===== Produce Pos/Neg pairs for the training subset of queries ====
# ===================================================================
print('Producing Pos-Neg pairs for training data..')
inputs = produce_pos_neg_pairs(data_train, docset_train, max_year=2015)
with open('data/bioasq6.top{0}.train_pairs.pkl'.format(topk), 'wb') as f:
pickle.dump(inputs, f)
#
# ===================================================================
# ==== Produce Pos/Neg pairs for the development subset of queries ==
# ===================================================================
print('Producing Pos-Neg pairs for dev data..')
inputs = produce_pos_neg_pairs(data_dev, docset_dev, max_year=2016)
with open('data/bioasq6.top{0}.dev_pairs.pkl'.format(topk), 'wb') as f:
pickle.dump(inputs, f)
#
# ===================================================================
# === Produce Reranking inputs for the training subset of queries ===
# ===================================================================
print('Producing reranking data for training..')
reranking_data = produce_reranking_inputs(data_train, docset_train, max_year=2015)
with open('data/bioasq6.top{0}.train_rerank.pkl'.format(topk), 'wb') as f:
# This allows memory efficient reading of each query object.
pickler = pickle.Pickler(f, protocol=2)
for e in reranking_data:
pickler.dump(e)
#
# ===================================================================
# == Produce Reranking inputs for the development subset of queries =
# ===================================================================
print('Producing reranking data for dev..')
reranking_data = produce_reranking_inputs(data_dev, docset_dev, max_year=2016)
with open('data/bioasq6.top{0}.dev_rerank.pkl'.format(topk), 'wb') as f:
# This allows memory efficient reading of each query object.
pickler = pickle.Pickler(f, protocol=2)
for e in reranking_data:
pickler.dump(e)