-
Notifications
You must be signed in to change notification settings - Fork 1
/
Exam_2.tex
205 lines (153 loc) · 8.39 KB
/
Exam_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
\documentclass[12pt,a4paper]{article} %scrbook}%bookof}
% makes nice font
%fills A4 page
\usepackage{a4wide}
\usepackage[inner=2cm,outer=2cm, bottom = 2.0cm]{geometry} %nice setting for twoside binding
%\usepackage[utf8]{inputenc} % damit man Umlaute direkt eingeben kann und diese erkannt werden.
\usepackage[T1]{fontenc} % Umlaute werden als eine Einheit angesehen -> richtige Trennung;
% ausserdem: die T1-Fonts gibt es auch in
% größeren Größen
%\usepackage{ae,aecompl}
\usepackage{units}
\usepackage[english]{babel} %hiermit erhält man z.B. 'Abb.' statt 'Fig.' bei Bildbeschriftungen
\usepackage[utf8]{inputenc}
%\makeglossary % zwischendurch makeindex disseration aufrufen
\usepackage{latexsym}
\usepackage[shortlabels]{enumitem}
%\clearscrplain
%\clearscrheadings
\usepackage[headsepline]{scrlayer-scrpage}
%\usepackage[]{scrpage2}
%\clearplainofpairofpagestyles
%\clearscrheadings
\pagestyle{scrheadings}
\cofoot[\pagemark]{\pagemark}% optionales Argument --> plain
%\clearscrheadings
\rohead{NAWI Graz}
\chead{
Exercise Statistical Physics \\{\small Contact: [email protected]}}
\lohead{ITP}
\usepackage{titlesec}
\titleformat{\section}
{\normalfont\large\bfseries}{\thesection}{1em}{}
\usepackage{amsmath,amsthm,amsfonts}
%\usepackage{showkeys}
%\usepackage{epsfig}
%\usepackage{epic}
\usepackage{xr}
\usepackage{graphicx}
%\usepackage{inmthesis}
\usepackage{hyperref}
\usepackage{verbatim}
\usepackage{tikz}
\usepackage{enumitem}
\usepackage[sorting=none, hyperref=true, backref=true]{biblatex}
\addbibresource{./library.bib}
%boxes
\usepackage{mdframed}
\usepackage{tensor}
%unity operator
%\usepackage{bbold}
\begin{document}
%\begin{center}
%Technische Universität Graz \\
%Institut für Theoretische Physik - computational physics \\
%Prof. Dr. Wolfgang von der Linden \\
%Kontakt: [email protected]
%\end{center}
\vspace{1cm}\begin{center}
{\Large \bf Exam 2, Editing time: 90 minutes}
\end{center}
\section{Ideal Bose gas near Bose--Einstein condensation [4P]}
Given is an ideal Bose gas with $N$ particles of mass $m$ in a box with volume $V$ at the temperature $T$ in a thermal equilibrium in $d$ dimensions.
Which of the following parameters have to be increased (+), decreased (--) or have not to be changed at all~(0) to effect the following changes:
\begin{enumerate}[a)]
\item Which change of the given parameters could lead to a Bose--Einstein condensation (\textbf{increase} the probability of having a BEC)
\item The chemical potential shall {\bf increase} (not being in BEC phase)
\item The specific heat shall {\bf increase} in the BEC phase.
\item The specific heat shall {\bf increase} not being in the BEC phase.
\end{enumerate}
\begin{table}[h]
\begin{center}
\begin{tabular}{|l| c|c|c|c|c|}
\hline
Change of state: & $\quad V \quad$ & $\quad T \quad $ & $\quad \lambda \quad$ & $\quad \textnormal{Dim } d \quad$ & $\quad N \quad$ \\
\hline \hline
a) + get a BEC & &&&& \\ \hline
c) + of $\mu$ (not in BEC phase)& &&&& \\ \hline
b) + of $c_V$ (in BEC phase) & &&&& \\ \hline
c) + of $c_V$ (not in BEC phase) & &&& & \\ \hline
\end{tabular}
\end{center}
\end{table}
\section{True or false [3P]}
Which of the following statements are correct. \textbf{Correct the false statements!}
% Geben Sie an, welche der folgenden Aussagen über das ideale Gas korrekt sind. Berichtigen Sie jene Aussagen, die nicht stimmen:
\begin{enumerate}[a)]
\item In the Debye model we assume all oscillators to have the same frequency.
% Die Durchschnittsenergie von Gasteilchen ist proportional zur Wurzel der Teilchenmasse.
\item The critical temperature for ideal non--interacting Bose gases increases with mass (is a BEC for Argon more likely than for Helium?).
% Die Teilchen üben keine Kraft aufeinander aus.
\item Below the critical temperature the chemical potential is constant.
% Alle Gasteilchen haben bei einer gegebenen Temperatur die gleiche kinetische Energie.
% \item[h)] Volume of the particles, compared to the whole volume occupied by tha gas is negligible.
% Das Volumen der Gasteilchen ist im Vergleich zum Gesamtvolumen, in dem sich das Gas befindet, vernachlässigbar.
\item In the Debye model (3D) the density of frequencies $D(\omega)$ is proportional to $D(\omega) \approx \omega^2$.
\item The Einstein model reproduces the low--temperature behaviour of the specific heat correctly whereas the high temperature behaviour is wrong.
\item There is no Bose--Einstein condensation for a non-interacting Bose gas in 1D or 2D.
\end{enumerate}
\section{Answer the questions [4P]}
\begin{enumerate}[1.]
\item Consider a system of 3 non-interacting particles. Denoting partition functions of each particle by $Z_1, Z_2$ and $Z_3$, express the total partition function of the system for
\begin{enumerate}[a)]
\item distinguishable particles,
\item indistinguishable particles.
\end{enumerate}
\item In which situations does quantum statistics become important?
\item Write down the Fermi-Dirac distribution function and sketch (\textbf{draw!}) the average occupation number $n_\varepsilon$ as a function of the single particle energy $\frac{\varepsilon}{\mu}$ for:
\begin{enumerate}[a)]
\item temperature T = 0.
\item small temperature T.
\item very large temperature T. Which classical theorem is reproduced?
\end{enumerate}
\item What happens to an ideal quantum gas in the limit temperature T $\rightarrow$ 0:
\begin{enumerate}[a)]
\item if the particles are fermions?
\item if the particles are bosons?
\end{enumerate}
\end{enumerate}
\section{Gas-Solid phases [4P]}
Consider molecules with the same mass $m$ coexist in gas-solid phases, at the temperature $T$. \\
\textbf{Gas phase:} First consider the \textbf{indistinguishable ideal non--interacting} gas molecules. Assume to have $N_g$ gas molecules in the volume $V_g$.
\begin{enumerate}[a)]
\item Calculate the grand partition function $\Xi_g$ for the gas molecules, where the thermal wavelength is $\lambda = h \beta^{1/2}/\sqrt{2\pi m}$, and the chemical potential is $\mu_g$.\\ Hint: Start to calculate the canonical partition function for one particle ($H_g = \frac{p^2}{2m}$), think about what the canonical partition function for $N$ indistinguishable particles is and construct the grandcanonical partition function. Remember the series expansion $\sum_n \frac{x^n}{n!} = \exp(x)$.
\end{enumerate}
You should end up with $\Xi_g = \exp\left( \frac{V_g}{\lambda^3} \exp(\beta \mu_g)\right)$.
\begin{enumerate}
\item [b)]Calculate and show that the average number of the gas molecules $\langle N_g \rangle$ is equal to
$$\langle N_g \rangle = \frac{V_g}{\lambda^3}\exp{\beta\mu_g}$$
Calculate the average energy $U_g$. For $U_g$, express it in terms of $\langle N_g \rangle$ and $k_B T$.
\end{enumerate}
Now consider the molecules that are in the solid phase and \textbf{distinguishable} with $N_s$ the number of molecules and $V_s$ the volume. They shall be described as three-dimensional harmonic oscillators with the frequency $\omega$. (i.e. the Einstein solid model with the potential $m\omega^2 q^2/2$ and the canonical partition sum for one particle $Z_c(1) = \frac{1}{2\sinh(\beta \hbar \omega /2)} \approx \frac{1}{\beta \hbar \omega}$)
\begin{enumerate}[c)]
\item Calculate the grand partition function $\Xi_s$ for the solid molecules where the chemical potential is $\mu_s$.
\item[d)] Calculate and show that the average number of the solid molecules $\langle N_s \rangle$ is equal to
$$\langle N_s \rangle = \frac{\exp(\beta\mu_s)(\frac{2\pi}{\beta h \omega})^3}{1 - \exp(\beta\mu_s)(\frac{2\pi}{\beta h \omega})^3}$$
Calculate the average energy $U_s$. For $U_s$, express it in terms of $\langle N_s \rangle$ and $k_B T$.
\end{enumerate}
Consider the molecules coexist in a gas-solid phase.
\begin{enumerate}
\item[e)] Calculate and express the density $\rho_g = \langle N_g \rangle / V_g$ of the gas molecules in terms of $\langle N_s \rangle, \beta, h, \omega \text{\, and \,} \lambda$ (chemical potential balance $\exp{\beta\mu_g} = \exp{\beta\mu_s}$).
\end{enumerate}
% \printbibliography
\vspace{2cm}
\begin{minipage}[t]{1\textwidth}
\raggedleft
\centering
\includegraphics[width = 0.20\textwidth]{CC-BY_icon}
\vspace{0.2cm}
\centering
{\Large Gerhard Dorn} \\
https://creativecommons.org/licenses/by/4.0/legalcode
\end{minipage}
\end{document}