generated from dlibml/dlib-template-project
-
Notifications
You must be signed in to change notification settings - Fork 2
/
squeezenet.h
70 lines (59 loc) · 2.89 KB
/
squeezenet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#ifndef SqueezeNet_H
#define SqueezeNet_H
#include <dlib/dnn.h>
namespace squeezenet
{
// clang-format off
using namespace dlib;
// ACT can be any activation
template <template <typename> class ACT>
struct def
{
template <long num_filters, long ks, int s, typename SUBNET>
using conp = add_layer<con_<num_filters, ks, ks, s, s, ks/2, ks/2>, SUBNET>;
template <typename SUBNET>
using max_pool3 = add_layer<max_pool_<3, 3, 2, 2, 1, 1>, SUBNET>;
template <typename INPUT>
using stem = max_pool3<ACT<conp<64, 7, 2, INPUT>>>;
template <long nf3x3, long nf1x1, long nf, typename SUBNET>
using fire_module = concat2<tag2, tag3,
tag3<ACT<conp<nf3x3, 3, 1,
skip1<
tag2<ACT<conp<nf1x1, 1, 1,
tag1<ACT<conp<nf, 1, 1,
SUBNET>>>>>>>>>>>;
template <typename INPUT>
using backbone_1_0 = fire_module<256, 256, 64,
max_pool3<
fire_module<256, 256, 64,
fire_module<192, 192, 48,
fire_module<192, 192, 48,
fire_module<128, 128, 32,
max_pool3<
fire_module<128, 128, 32,
fire_module<64, 64, 16,
fire_module<64, 64, 16,
stem<INPUT>>>>>>>>>>>;
template <typename INPUT>
using backbone_1_1 = fire_module<256, 256, 64,
fire_module<256, 256, 64,
fire_module<192, 192, 48,
fire_module<192, 192, 48,
max_pool3<
fire_module<128, 128, 32,
fire_module<128, 128, 32,
max_pool3<
fire_module<64, 64, 16,
fire_module<64, 64, 16,
stem<INPUT>>>>>>>>>>>;
};
// DO must be dropout for train mode and multiply for infer
template <template <typename> class ACT, template <typename> class DO, typename SUBNET>
using classification_head = loss_multiclass_log<avg_pool_everything<ACT<con<1000, 1, 1, 1, 1, DO<SUBNET>>>>>;
using train_v1_0 = classification_head<relu, dropout, def<relu>::backbone_1_0<input_rgb_image>>;
using infer_v1_0 = classification_head<relu, multiply, def<relu>::backbone_1_0<input_rgb_image>>;
using train_v1_1 = classification_head<relu, dropout, def<relu>::backbone_1_1<input_rgb_image>>;
using infer_v1_1 = classification_head<relu, multiply, def<relu>::backbone_1_1<input_rgb_image>>;
// clang-format on
} // namespace squeezenet
#endif // SqueezeNet_H