-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.html
600 lines (577 loc) · 36.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
<!DOCTYPE HTML>
<!--
Stellar by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-48900508-7"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-48900508-7');
</script>
<title>Deep Learning for Physical Sciences, NeurIPS 2017</title>
<meta name="description" content="Website for the Deep Learning for Physical Sciences (DLPS) workshop at the 31st Conference on Neural Information Processing Systems (NeurIPS), Long Beach, CA, United States">
<meta name="author" content="Atilim Gunes Baydin">
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<!--[if lte IE 8]><script src="assets/js/ie/html5shiv.js"></script><![endif]-->
<link rel="stylesheet" href="assets/css/main.css" />
<!--[if lte IE 9]><link rel="stylesheet" href="assets/css/ie9.css" /><![endif]-->
<!--[if lte IE 8]><link rel="stylesheet" href="assets/css/ie8.css" /><![endif]-->
<link rel="stylesheet" href="assets/css/lightbox.css" />
</head>
<body>
<!-- Wrapper -->
<div id="wrapper">
<!-- Header -->
<header id="header" class="alt">
<!-- <span class="logo"><img src="images/logo.svg" alt="" /></span> -->
<img style="width:5em;"src="images/NeurIPS-logo-white.svg" alt="" />
<h1>Deep Learning for Physical Sciences</h1>
<p>Workshop at the 31st Conference on Neural Information Processing Systems (NeurIPS)<br />
December 8, 2017</p>
</header>
<!-- Nav -->
<nav id="nav">
<ul>
<li><a href="#about" class="active">About</a></li>
<!-- <li><a href="#survey">Survey</a></li> -->
<li><a href="#schedule">Schedule</a></li>
<li><a href="#papers">Papers</a></li>
<li><a href="#cfp">Call for papers</a></li>
<li><a href="#organizers">Organizers</a></li>
<li><a href="#sponsors">Sponsors</a></li>
<li><a href="#location">Location</a></li>
<li><a href="https://ml4physicalsciences.github.io/"><font color="red"><sup>NEW!</sup></font>LATEST</a></li>
</ul>
</nav>
<!-- Main -->
<div id="main">
<!-- Introduction -->
<section id="about" class="main">
<div class="spotlight">
<div class="content">
<h2>This website was used for the 2017 instance of this workshop.</br>Please visit <a href="https://ml4physicalsciences.github.io/">ml4physicalsciences.github.io</a> for up-to-date information.</h2>
<header class="major">
<h2>About</h2>
</header>
<p>Physical sciences span problems and challenges at all scales in the universe: from finding exoplanets and asteroids in trillions of sky-survey pixels, to automatic tracking of extreme weather phenomena in climate datasets, to detecting anomalies in event streams from the Large Hadron Collider at CERN. Tackling a number of associated data-intensive tasks, including, but not limited to, regression, classification, clustering, dimensionality reduction, likelihood-free inference, generative models, and experimental design are critical for furthering scientific discovery. The Deep Learning for Physical Sciences (DLPS) workshop invites researchers to contribute papers that demonstrate progress in the application of machine and deep learning techniques to real-world problems in physical sciences (including the fields and subfields of astronomy, chemistry, Earth science, and physics).</p>
<p>We will discuss research questions, practical implementation challenges, performance / scaling, and unique aspects of processing and analyzing scientific datasets. The target audience comprises members of the machine learning community who are interested in scientific applications and researchers in the physical sciences. By bringing together these two communities, we expect to strengthen dialogue, introduce exciting new open problems to the wider NeurIPS community, and stimulate production of new approaches to solving science problems. Invited talks from leading individuals from both communities will cover the state-of-the-art techniques and set the stage for this workshop.</p>
<h2>NeurIPS 2017</h2>
<p><span class="image left"><img style="width:6em;padding-left:0.5em;padding-top:0.3em;" src="images/NeurIPS-logo.svg" alt="" /></span>The Deep Learning for Physical Sciences (DLPS) 2017 workshop will be held on December 8, 2017 as a part of the <a href="https://nips.cc/">31st Annual Conference on Neural Information Processing Systems</a>, at the Long Beach Convention & Entertainment Center, Long Beach, CA, United States. Please check the main conference website for information about registration, schedule, venue, and travel arrangements.</p>
<h2>Photos from 2017 workshop </h2>
<!-- <ul class="features">
<li>
<img style="width:100%;"src="images/2017.jpg" alt="" title=" " />
</li>
</ul> -->
<ul class="features">
<li><a href="images/2017/02.jpg" data-lightbox="gallery" style="border:0;"><img style="width:150px;" src="images/2017/02.jpg" alt="" /></a></li>
<li><a href="images/2017/03.jpg" data-lightbox="gallery" style="border:0;"><img style="width:150px;" src="images/2017/03.jpg" alt="" /></a></li>
<li><a href="images/2017/08.jpg" data-lightbox="gallery" style="border:0;"><img style="width:150px;" src="images/2017/08.jpg" alt="" /></a></li>
<li><a href="images/2017/14.jpg" data-lightbox="gallery" style="border:0;"><img style="width:150px;" src="images/2017/14.jpg" alt="" /></a></li>
</ul>
</div>
</div>
</section>
<section id="survey" class="main" style="background-color:GhostWhite">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Survey</h2>
</header>
Help us improve the workshop by filling out this quick post-event <a href="https://goo.gl/forms/Z1VXjibPiqIfevqI3">survey</a>.</p>
Your opinion matters!
</div>
</div>
</section>
<section id="schedule" class="main">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Schedule</h2>
</header>
<!-- <p>TBA</p>
<p>Invited speakers: TBA</p>
<p>Panel: TBA</p> -->
</div>
</div>
<h2>Invited speakers</h2>
<ul>
<li><a href="http://homepages.inf.ed.ac.uk/imurray2/">Iain Murray</a> (University of Edinburgh)</li>
<li><a href="https://staff.fnwi.uva.nl/m.welling/">Max Welling</a> (University of Amsterdam)</li>
<li><a href="https://www.perimeterinstitute.ca/people/juan-carrasquilla">Juan Carrasquilla</a> (D-Wave Systems / Vector Institute for Artificial Intelligence)</li>
<li><a href="https://glouppe.github.io/">Gilles Louppe</a> (University of Liège)</li>
<li><a href="https://research.google.com/pubs/104884.html">George Dahl</a> (Google Brain) (panel session)</li>
<li><a href="http://www.chemie.unibas.ch/~anatole/">Anatole von Lilienfeld</a> (University of Basel)</li>
</ul>
<h2>Schedule</h2>
<div class="table-wrapper">
<table>
<tbody>
<tr>
<td>08:50 – 09:00</td>
<td>
Introduction<br><br>
<b><a href="http://www.robots.ox.ac.uk/~gunes/">Atılım Güneş Baydin</a></b> (University of Oxford)<br>
<em>Introduction and opening remarks</em> <a href="files/nips_dlps_2017_slides_baydin.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/nHKV2NiMPHk" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td colspan="2">Morning session chair:<br>
<b><a href="http://mickypaganini.github.io/">Michela Paganini</a></b> (Yale University)</td>
</tr>
<tr>
<td>09:00 – 09:40</td>
<td>
Invited talk 1<br><br>
<b><a href="https://staff.fnwi.uva.nl/m.welling/">Max Welling</a></b> (University of Amsterdam)<br>
<em>Deep recurrent inverse modeling for radio astronomy and fast MRI imaging</em> <a href="files/nips_dlps_2017_slides_welling.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/1x2IsBKgfPY" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>
Contributed talk 1<br><br>
<b>Isaac Henrion</b> (New York University)<br>
<em>Neural Message Passing for Jet Physics</em> <a href="files/nips_dlps_2017_slides_henrion.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/oJdTbyS6mBQ" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>
Contributed talk 2<br><br>
<b><a href="http://projects-web.engr.colostate.edu/accelerator/profile.php?profile=AuraleeEdelen">Auralee Edelen</a></b> (Colorado State University and Fermilab)<br>
<em>Using Neural Network Control Policies For Rapid Switching Between Beam Parameters in a Free Electron Laser</em> <a href="files/nips_dlps_2017_slides_edelen.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/cm_zm_wUZpA" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>10:20 – 11:00</td>
<td>Poster session and coffee break</td>
</tr>
<tr>
<td>11:00 – 11:40</td>
<td>
Invited talk 2<br><br>
<b><a href="https://glouppe.github.io/">Gilles Louppe</a></b> (University of Liège)<br>
<em>Adversarial Games for Particle Physics</em> <a href="files/nips_dlps_2017_slides_louppe.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/bAR3WA3nvnI" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>
Contributed talk 3<br><br>
<b><a href="http://dustintran.com/">Dustin Tran</a></b> (Columbia University)<br>
<em>Implicit Causal Models for Genome-wide Association Studies</em> <a href="files/nips_dlps_2017_slides_tran.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/gi2jZ_bVJuA" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>12:00 – 12:20</td>
<td>
Contributed talk 4<br><br>
<b><a href="http://aditya-grover.github.io/">Aditya Grover</a></b> (Stanford University)<br>
<em>Graphite: Iterative Generative Modeling of Graphs</em> <a href="files/nips_dlps_2017_slides_grover.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/rxAwhwMCR4g" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>12:20 – 12:25</td>
<td>
Sponsor presentation<br><br>
<b>Hanlin Tang</b> (Intel Nervana)<br>
<em>Intel AI Lab</em><br>
<a href="files/nips_dlps_2017_slides_tang.pdf">[slides]</a>
</td>
</tr>
<tr>
<td>12:25 – 14:00</td>
<td>Lunch break</td>
</tr>
<tr>
<td colspan="2">Afternoon session chair:<br>
<b>Savannah Thais</b> (Yale University)</td>
</tr>
<tr>
<tr>
<td>14:00 – 14:40</td>
<td>
Invited talk 3<br><br>
<b><a href="http://homepages.inf.ed.ac.uk/imurray2/">Iain Murray</a></b> (University of Edinburgh)<br>
<em>Learning priors, likelihoods, or posteriors</em> <a href="files/nips_dlps_2017_slides_murray.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/zPSCd3XxtyQ" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>
Contributed talk 5<br><br>
<b><a href="https://astro.illinois.edu/directory/profile/dgeorge5">Daniel George</a></b> (University of Illinois at Urbana-Champaign)<br>
<em>Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Real LIGO Data</em> <a href="files/nips_dlps_2017_slides_george.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/2EPK42cgSTY" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>15:00 – 16:00</td>
<td>Poster session and coffee break</td>
</tr>
<tr>
<td>16:00 – 16:40</td>
<td>
Invited talk 4<br><br>
<b><a href="https://www.perimeterinstitute.ca/people/juan-carrasquilla">Juan Carrasquilla</a></b> (D-Wave Systems / Vector Institute for Artificial Intelligence)<br>
<em>A machine learning perspective on the many-body problem in classical and quantum physics</em> <a href="files/nips_dlps_2017_slides_carrasquilla.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/mSo2ODzeI1k" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>16:40 – 17:20</td>
<td>
Invited talk 5<br><br>
<b><a href="http://www.chemie.unibas.ch/~anatole/">Anatole von Lilienfeld</a></b> (University of Basel)<br>
<em>Quantum Machine Learning</em> <a href="files/nips_dlps_2017_slides_von_lilienfeld.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/gxeSGRo8XFU" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>17:20 – 17:40</td>
<td>
Contributed talk 6<br><br>
<b><a href="https://www-users.cs.umn.edu/~karpa009/">Anuj Karpatne</a></b> (University of Minnesota)<br>
<em>How Can Physics Inform Deep Learning Methods in Scientific Problems?: Recent Progress and Future Prospects</em> <a href="files/nips_dlps_2017_slides_karpatne.pdf">[slides]</a><br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/POsGBquHFaY" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>17:40 – 18:40</td>
<td>
Panel session<br><br>
Moderator:<br>
<b>Kyle Cranmer</b> (New York University)<br><br>
Panelists:<br>
<b>Iain Murray</b> (University of Edinburgh)<br>
<b>Max Welling</b> (University of Amsterdam)<br>
<b>Juan Carrasquilla</b> (D-Wave Systems / Vector Institute for Artificial Intelligence)<br>
<b>Gilles Louppe</b> (University of Liège)<br>
<b>George Dahl</b> (Google Brain)<br>
<b>Anatole von Lilienfeld</b> (University of Basel)<br><br>
<iframe id="ytplayer" type="text/html" width="320" height="180" src="https://www.youtube.com/embed/PVMetkm_Q78" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
<tr>
<td>18:40 – 18:45</td>
<td>Closing remarks</td>
</tr>
</tbody>
</table>
</div>
</section>
<section id="papers" class="main">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Accepted papers</h2>
</header>
</div>
</div>
<div class="table-wrapper">
<table>
<tbody>
<tr>
<td><b>Adversarial learning to eliminate systematic errors: a case study in High Energy Physics <a href="/files/nips_dlps_2017_1.pdf">[pdf]</a></b><br>
Victor Estrade, Cecile Germain, Isabelle Guyon and David Rousseau</td>
</tr>
<tr>
<td><b>Variational Inference over Non-differentiable Cardiac Simulators using Bayesian Optimization <a href="/files/nips_dlps_2017_2.pdf">[pdf]</a></b><br>
Adam McCarthy, Blanca Rodriguez and Ana Minchole</td>
</tr>
<tr>
<td><b>Deep topology classifiers for a more efficient trigger selection at the LHC <a href="/files/nips_dlps_2017_3.pdf">[pdf]</a></b><br>
Daniel Weitekamp III, Thong Q. Nguyen, Dustin Anderson, Roberto Castello, Maurizio Pierini, Maria Spiropulu and Jean-Roch Vlimant</td>
</tr>
<tr>
<td><b>Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks <a href="/files/nips_dlps_2017_4.pdf">[pdf]</a></b><br>
John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan Delacy, Max Tegmark, John Joannopoulos and Marin Soljacic</td>
</tr>
<tr>
<td><b>FlareNet: A Deep Learning Framework for Solar Phenomena Prediction <a href="/files/nips_dlps_2017_5.pdf">[pdf]</a></b><br>
Sean McGregor, Dattaraj Dhuri, Anamaria Berea and Andrés Muñoz-Jaramillo</td>
</tr>
<tr>
<td><b>Solving differential equations with unknown constitutive relations as recurrent neural networks <a href="/files/nips_dlps_2017_6.pdf">[pdf]</a></b><br>
Tobias Hagge, Panos Stinis, Enoch Yeung and Alexandre Tartakovsky</td>
</tr>
<tr>
<td><b>Convolutional Neural Networks for Electron Neutrino and Electron Shower Energy Reconstruction in the NOvA Detectors <a href="/files/nips_dlps_2017_7.pdf">[pdf]</a></b><br>
Lars Hertel, Lingge Li, Pierre Baldi and Jianming Bian</td>
</tr>
<tr>
<td><b>Deep Learning Reconstruction of Ultra-Short Pulses <a href="/files/nips_dlps_2017_8.pdf">[pdf]</a></b><br>
Tom Zahavy, Alex Dikopoltsev, Shie Mannor, Oren Cohen and Moti Segev</td>
</tr>
<tr>
<td><b>Towards a Hybrid Approach to Physical Process Modeling <a href="/files/nips_dlps_2017_9.pdf">[pdf]</a></b><br>
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari</td>
</tr>
<tr>
<td><b>DeepJet: Generic physics object based jet multiclass classification for LHC experiments <a href="/files/nips_dlps_2017_10.pdf">[pdf]</a></b><br>
Markus Stoye, Jan Kieseler, Mauro Verzetti, Huilin Qu, Loukas Gouskos, Anna Stakia and CMS Collaboration</td>
</tr>
<tr>
<td><b>Graph Memory Networks for Molecular Activity Prediction <a href="/files/nips_dlps_2017_11.pdf">[pdf]</a></b><br>
Trang Pham, Truyen Tran and Svetha Venkatesh</td>
</tr>
<tr>
<td><b>PSIque: Next Sequence Prediction of Satellite Images using a Convolutional Sequence-to-Sequence Network <a href="/files/nips_dlps_2017_12.pdf">[pdf]</a></b><br>
Seungkyun Hong, Seongchan Kim and Sa-Kwang Song</td>
</tr>
<tr>
<td><b>ConvWave: Searching for Gravitational Waves with Fully Convolutional Neural Nets <a href="/files/nips_dlps_2017_13.pdf">[pdf]</a></b><br>
Timothy Gebhard, Niki Kilbertus, Giambattista Parascandolo, Ian Harry and Bernhard Schölkopf</td>
</tr>
<tr>
<td><b>Implicit Causal Models for Genome-wide Association Studies <a href="/files/nips_dlps_2017_14.pdf">[pdf]</a></b><br>
Dustin Tran and David Blei</td>
</tr>
<tr>
<td><b>Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics <a href="/files/nips_dlps_2017_15.pdf">[pdf]</a></b><br>
Benjamin Hooberman, Amir Farbin, Gulrukh Khattak, Vitória Pacela, Maurizio Pierini, Jean-Roch Vlimant, Maria Spiropulu, Wei Wei, Matt Zhang and Sofia Vallecorsa</td>
</tr>
<tr>
<td><b>Using Neural Network Control Policies For Rapid Switching Between Beam Parameters in a Free Electron Laser <a href="/files/nips_dlps_2017_16.pdf">[pdf]</a></b><br>
Auralee Edelen, Jonathan Edelen, Sandra Biedron, Stephen Milton and Peter van der Slot</td>
</tr>
<tr>
<td><b>Data Quality Network for Spatiotemporal Forecasting <a href="/files/nips_dlps_2017_17.pdf">[pdf]</a></b><br>
Sungyong Seo, Arash Mohegh, George Ban-Weiss and Yan Liu</td>
</tr>
<tr>
<td><b>Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Real LIGO Data <a href="/files/nips_dlps_2017_18.pdf">[pdf]</a></b><br>
Daniel George and E. A. Huerta</td>
</tr>
<tr>
<td><b>How Can Physics Inform Deep Learning Methods in Scientific Problems?: Recent Progress and Future Prospects <a href="/files/nips_dlps_2017_19.pdf">[pdf]</a></b><br>
Anuj Karpatne, William Watkins, Jordan Read and Vipin Kumar</td>
</tr>
<tr>
<td><b>Segmenting and Tracking Extreme Climate Events using Neural Networks <a href="/files/nips_dlps_2017_20.pdf">[pdf]</a></b><br>
Mayur Mudigonda, Soo Kim, Ankur Mahesh, Samira Kahou, Karthik Kashinath, Dean Williams, Vincent Michalski, Travis O'Brien and Mr Prabhat</td>
</tr>
<tr>
<td><b>Graphite: Iterative Generative Modeling of Graphs <a href="/files/nips_dlps_2017_21.pdf">[pdf]</a></b><br>
Aditya Grover, Aaron Zweig and Stefano Ermon</td>
</tr>
<tr>
<td><b>Searching for Exoplanets Using Artificial Intelligence <a href="/files/nips_dlps_2017_22.pdf">[pdf]</a></b><br>
Kyle A. Pearson, Leon Palafox and Caitlin A. Griffith</td>
</tr>
<tr>
<td><b>Searching for Long-Period Comets with Deep Learning Tools <a href="/files/nips_dlps_2017_23.pdf">[pdf]</a></b><br>
Susana Zoghbi, Marcelo De Cicco, Antonio Ordonez, Andres Plata Stapper, Jack Collison, Peter Gural, Siddha Ganju, Jose Luis Galache and Peter Jenniskens</td>
</tr>
<tr>
<td><b>Survey of Machine Learning Techniques for High Energy Electromagnetic Shower Classification <a href="/files/nips_dlps_2017_24.pdf">[pdf]</a></b><br>
Michela Paganini, Luke de Oliveira and Benjamin Nachman</td>
</tr>
<tr>
<td><b>Glitch Classification and Clustering for LIGO with Deep Transfer Learning <a href="/files/nips_dlps_2017_25.pdf">[pdf]</a></b><br>
Daniel George, Hongyu Shen and E. A. Huerta</td>
</tr>
<tr>
<td><b>Tips and Tricks for Training GANs with Physics Constraints <a href="/files/nips_dlps_2017_26.pdf">[pdf]</a></b><br>
Luke de Oliveira, Michela Paganini and Benjamin Nachman</td>
</tr>
<tr>
<td><b>Towards understanding feedback from supermassive black holes using convolutional neural networks <a href="/files/nips_dlps_2017_27.pdf">[pdf]</a></b><br>
Stanislav Fort</td>
</tr>
<tr>
<td><b>Particle Track Reconstruction with Deep Learning <a href="/files/nips_dlps_2017_28.pdf">[pdf]</a></b><br>
Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Mr. Prabhat, Dustin Anderson, Josh Bendavid, Maria Spiropoulou, Jean-Roch Vlimant, Stephan Zheng, Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski, Panagiotis Spentzouris, Aristeidis Tsaris and Daniel Zurawski</td>
</tr>
<tr>
<td><b>Neural Message Passing for Jet Physics <a href="/files/nips_dlps_2017_29.pdf">[pdf]</a></b><br>
Isaac Henrion, Kyle Cranmer, Joan Bruna, Kyunghyun Cho, Johann Brehmer, Gilles Louppe and Gaspar Rochette</td>
</tr>
<tr>
<td><b>Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators <a href="/files/nips_dlps_2017_30.pdf">[pdf]</a></b><br>
Mario Lezcano Casado, Atılım Güneş Baydin, David Martinez Rubio, Tuan Anh Le, Frank Wood, Lukas Heinrich, Gilles Louppe, Kyle Cranmer, Wahid Bhimji, Karen Ng and Prabhat</td>
</tr>
</tbody>
</table>
</div>
</section>
<section id="cfp" class="main">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Call for papers</h2>
</header>
<p>We invite researchers to submit papers particularly in the following and related areas:</p>
<ul>
<li>Application of machine and deep learning to physical sciences</li>
<li>Generative models</li>
<li>Likelihood-free inference</li>
<li>Variational inference</li>
<li>Simulation-based models</li>
<li>Implicit models</li>
<li>Probabilistic models</li>
<li>Model interpretability</li>
<li>Approximate Bayesian computation</li>
<li>Strategies for incorporating prior scientific knowledge into machine learning algorithms</li>
<li>Experimental design</li>
<li>Any other area related to the subject of the workshop</li>
</ul>
<p>Submissions of completed projects as well as high-quality works in progress are welcome. All accepted papers will be made available on the workshop website and presented as posters or contributed talks during the workshop. As this does not constitute an archival publication or formal proceedings, authors are free to publish their extended work elsewhere. Submissions will be kept confidential until they are accepted and authors confirm that they can be included in the workshop. If a submission is not accepted, or withdrawn for any reason, it will be kept confidential and not made public.</p>
<p>Up to 6 accepted submissions will be selected for 20-minute contributed talks.</p>
<h2>Submission instructions</h2>
<p>Submissions should be anonymized short papers up to 4 pages in PDF format, typeset using the <a href="https://nips.cc/Conferences/2017/PaperInformation/StyleFiles">NeurIPS style</a>. References do not count towards the page limit. Appendices are discouraged, and any appendix pages will be included in the 4-page limit. A workshop-specific modified NeurIPS style file will be provided for the camera-ready versions, after the author notification date.
</p>
<p>Submissions are handled through the <a href="https://easychair.org/conferences/?conf=dlps2017">EasyChair website for DLPS 2017</a>. Please note that at least one coauthor of each accepted paper will be expected to attend the workshop in person to present a poster or give a contributed talk.</p>
<a href="https://easychair.org/conferences/?conf=dlps2017" class="button">Submit paper</a></li>
<p></p>
<h2>Travel support and complimentary registration</h2>
<p>We have a number of complimentary workshop registrations that will be handed out to paper authors. We also have travel support available particularly for students and junior researchers, thanks to the generous support from <a href="#sponsors">our sponsors</a>.</p>
<p>To apply for complimentary registration and travel support, please submit your paper and get in touch with the contact address listed at the bottom of this page, briefly describing your circumstances (e.g., undergraduate or graduate student, postdoctoral researcher, junior faculty, etc.) and intended travel plans (travel origin).</p>
<h2>Important dates</h2>
<ul>
<li>Submission deadline: <strike>November 1, 2017</strike> November 3, 2017, 23:59 <a href="https://www.timeanddate.com/worldclock/usa/los-angeles">PDT</a></li>
<li>Author notification: <strike>November 10, 2017</strike> November 13, 2017</li>
<li>NeurIPS deadline to <a href="https://nips.cc/Help/CancellationPolicy">cancel registration</a>: November 16, 2017</li>
<li>Camera-ready (final) paper deadline: December 1, 2017</li>
<li>Workshop: December 8, 2017</li>
</ul>
<h2>Information for Accepted Papers and Posters</h2>
<p>Please produce a "camera-ready" (final) version of your accepted paper by replacing the "nips_2017.sty" style file with the "nips_dlps_2017.sty" file <a href="/files/nips_dlps_2017.sty">available here</a> and using the "final" option (that is, "\usepackage[final]{nips_dlps_2017}") to include author and affiliation information. The modified style file replaces the first page footer to refer to the workshop instead of the main conference. It is acceptable if your paper goes above the 4-page limit (excluding references) due to author and affiliation information appearing. It is <b>not</b> acceptable to make revisions beyond minor corrections and to include material that was not present in the reviewed version of your paper.</p>
<p>Please upload the final PDF as an updated version in your existing submission on <a href="https://easychair.org/conferences/?conf=dlps2017">EasyChair</a>. The uploaded final version will be hosted in the workshop website in an "accepted papers" section.</p>
<p>For your posters, we suggest <a href="https://en.wikipedia.org/wiki/ISO_216#Dimensions_of_A.2C_B_and_C_Series">A0 size</a> measuring 841 × 1189 mm (33.1 × 46.8 in). Note that the workshop venue cannot accommodate posters larger than 910 × 1220 mm (36 × 48 in). All accepted papers that do not have an oral presentation (contributed talks in the <a href="#schedule">schedule</a>) are expected to be presented as posters. Posters are optional for oral presenters.</p>
</div>
</div>
</section>
<section id="organizers" class="main">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Organizers</h2>
</header>
<ul class="features">
<li>
<img style="width:10em;" src="images/angus.jpg" alt=""/>
<h3><a href="http://ruthangus.github.io">Ruth Angus</a></br>Columbia University</h3>
</li>
<li>
<img style="width:10em;" src="images/baydin.jpg" alt=""/>
<h3><a href="http://www.robots.ox.ac.uk/~gunes/">Atılım Güneş Baydin</a></br>University of Oxford</h3>
</li>
<li>
<img style="width:10em;" src="images/cranmer.jpg" alt=""/>
<h3><a href="http://theoryandpractice.org/">Kyle Cranmer</a></br>New York University</h3>
</li>
<li>
<img style="width:10em;" src="images/huppenkothen.jpg" alt=""/>
<h3><a href="http://huppenkothen.org/">Daniela Huppenkothen</a></br>New York University</h3>
</li>
<li>
<img style="width:10em;" src="images/paganini.jpg" alt=""/>
<h3><a href="http://mickypaganini.github.io/">Michela Paganini</a></br>Yale University</h3>
</li>
<li>
<img style="width:10em;" src="images/prabhat.jpg" alt=""/>
<h3><a href="http://www.nersc.gov/about/nersc-staff/data-analytics-services/prabhat/">Prabhat</a></br>NERSC, Berkeley Lab</h3>
</li>
<li>
<img style="width:10em;" src="images/thais.jpg" alt=""/>
<h3><a href="https://www.linkedin.com/in/savannah-thais-12a7b95a/">Savannah Thais</a></br>Yale University</h3>
</li>
<li>
<img style="width:10em;" src="images/wood.jpg" alt=""/>
<h3><a href="http://www.robots.ox.ac.uk/~fwood/">Frank Wood</a></br>University of Oxford</h3>
</li>
</ul>
</div>
</div>
</section>
<section id="sponsors" class="main">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Sponsors</h2>
</header>
<ul class="features">
<li>
<img style="width:10em;"src="images/cray-logo.png" alt="" />
<h3><a href="https://www.cray.com/">Cray Inc.</a></h3>
</li>
<li>
<img style="width:10em;"src="images/moore-foundation-logo.png" alt="" />
<h3><a href="https://www.moore.org/">Gordon and Betty</br> Moore Foundation</a></h3>
</li>
<li>
<img style="width:10em;"src="images/intel-nervana-logo.png" alt="" />
<h3><a href="https://www.intelnervana.com/">Intel Nervana</a></h3>
</li>
</ul>
</div>
</div>
</section>
<section id="location" class="main">
<div class="spotlight">
<div class="content">
<header class="major">
<h2>Location</h2>
</header>
<p>Promenade Room 104C, <a href="http://www.longbeachcc.com/">Long Beach Convention & Entertainment Center</a>, 300 E Ocean Blvd, Long Beach, CA 90802, United States</p>
<iframe src="https://www.google.com/maps/embed?pb=!1m14!1m8!1m3!1d6633.998604143161!2d-118.1892951!3d33.7606839!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x80dd313b68c4eae7%3A0x69f1fff3cb508d42!2sLong+Beach+Convention+%26+Entertainment+Center!5e0!3m2!1sen!2sus!4v1505698004345" width="100%" height="300em" frameborder="0" style="border:0" allowfullscreen></iframe>
</div>
</div>
</section>
</div>
<!-- Footer -->
<footer id="footer">
<section>
<h2>Contact</h2>
<p>For questions and comments, please contact: <a href="mailto:[email protected]">[email protected]</a></p>
</section>
<p class="copyright">Background image: <a href="https://www.spacetelescope.org/images/potw1712a/">NGC 3447 from Hubble WFC3</a></p>
<p class="copyright">Copyright © Atılım Güneş Baydin. Design: <a href="https://html5up.net">HTML5 UP</a>.</br>Design inspired by <a href="http://bayesiandeeplearning.org/">http://bayesiandeeplearning.org/</a> by Yarin Gal.</p>
</footer>
</div>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/jquery.scrollex.min.js"></script>
<script src="assets/js/jquery.scrolly.min.js"></script>
<script src="assets/js/skel.min.js"></script>
<script src="assets/js/util.js"></script>
<!--[if lte IE 8]><script src="assets/js/ie/respond.min.js"></script><![endif]-->
<script src="assets/js/main.js"></script>
<!-- Start of StatCounter Code for Default Guide -->
<script type="text/javascript">
var sc_project=11450024;
var sc_invisible=1;
var sc_security="5aa7692e";
var sc_https=1;
var scJsHost = (("https:" == document.location.protocol) ?
"https://secure." : "http://www.");
document.write("<sc"+"ript type='text/javascript' src='" +
scJsHost+
"statcounter.com/counter/counter.js'></"+"script>");
</script>
<noscript><div class="statcounter"><a title="web analytics"
href="http://statcounter.com/" target="_blank"><img
class="statcounter"
src="//c.statcounter.com/11450024/0/5aa7692e/1/" alt="web
analytics"></a></div></noscript>
<!-- End of StatCounter Code for Default Guide -->
<script src="assets/js/lightbox.js"></script>
</body>
</html>