-
Notifications
You must be signed in to change notification settings - Fork 20
/
cuda_myriadgroestl.cu
319 lines (264 loc) · 11.9 KB
/
cuda_myriadgroestl.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Auf Myriadcoin spezialisierte Version von Groestl inkl. Bitslice
#include <stdio.h>
#include <memory.h>
#include "miner.h"
#include "cuda_helper.h"
// globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU
static uint32_t *d_outputHashes[MAX_GPUS];
static uint32_t *d_resultNonce[MAX_GPUS];
__constant__ uint32_t myriadgroestl_gpu_msg[20];
// muss expandiert werden
__constant__ uint32_t myr_sha256_gpu_constantTable[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
__constant__ uint32_t myr_sha256_gpu_constantTable2[64] = {
0xc28a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf374,
0x649b69c1, 0xf0fe4786, 0x0fe1edc6, 0x240cf254, 0x4fe9346f, 0x6cc984be, 0x61b9411e, 0x16f988fa,
0xf2c65152, 0xa88e5a6d, 0xb019fc65, 0xb9d99ec7, 0x9a1231c3, 0xe70eeaa0, 0xfdb1232b, 0xc7353eb0,
0x3069bad5, 0xcb976d5f, 0x5a0f118f, 0xdc1eeefd, 0x0a35b689, 0xde0b7a04, 0x58f4ca9d, 0xe15d5b16,
0x007f3e86, 0x37088980, 0xa507ea32, 0x6fab9537, 0x17406110, 0x0d8cd6f1, 0xcdaa3b6d, 0xc0bbbe37,
0x83613bda, 0xdb48a363, 0x0b02e931, 0x6fd15ca7, 0x521afaca, 0x31338431, 0x6ed41a95, 0x6d437890,
0xc39c91f2, 0x9eccabbd, 0xb5c9a0e6, 0x532fb63c, 0xd2c741c6, 0x07237ea3, 0xa4954b68, 0x4c191d76
};
__constant__ uint32_t myr_sha256_gpu_hashTable[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
__constant__ uint32_t myr_sha256_gpu_w2Table[64] = {
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549,
0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91,
0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7,
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 };
// 64 Register Variante für Compute 3.0
#include "groestl_functions_quad.cu"
#include "bitslice_transformations_quad.cu"
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
__device__ void myriadgroestl_gpu_sha256(uint32_t *message)
{
uint32_t W1[16];
uint32_t W2[16];
// Initialisiere die register a bis h mit der Hash-Tabelle
uint32_t regs[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
uint32_t hash[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
#pragma unroll 16
for(int k=0;k<16;k++)
W1[k] = cuda_swab32(message[k]);
// Progress W1
#pragma unroll 16
for(int j=0;j<16;j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
// Progress W2...W3
////// PART 1
#pragma unroll 2
for(int j=0;j<2;j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5
for(int j=2;j<7;j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 8
for(int j=7;j<15;j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Rundenfunktion
#pragma unroll 16
for(int j=0;j<16;j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 2
#pragma unroll 2
for(int j=0;j<2;j++)
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 5
for(int j=2;j<7;j++)
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 8
for(int j=7;j<15;j++)
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
// Rundenfunktion
#pragma unroll 16
for(int j=0;j<16;j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 3
#pragma unroll 2
for(int j=0;j<2;j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5
for(int j=2;j<7;j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 8
for(int j=7;j<15;j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Rundenfunktion
#pragma unroll 16
for(int j=0;j<16;j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
#pragma unroll 8
for(int k=0;k<8;k++)
hash[k] += regs[k];
/////
///// Zweite Runde (wegen Msg-Padding)
/////
#pragma unroll 8
for(int k=0;k<8;k++)
regs[k] = hash[k];
// Progress W1
#pragma unroll
for(int j=0;j<57;j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll
for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
regs[3] += regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[57];
regs[2] += regs[6] + S1(regs[3]) + Ch(regs[3], regs[4], regs[5]) + myr_sha256_gpu_constantTable2[58];
regs[1] += regs[5] + S1(regs[2]) + Ch(regs[2], regs[3], regs[4]) + myr_sha256_gpu_constantTable2[59];
regs[0] += regs[4] + S1(regs[1]) + Ch(regs[1], regs[2], regs[3]) + myr_sha256_gpu_constantTable2[60];
message[7] = cuda_swab32(hash[7] + regs[0]);
}
__global__ void __launch_bounds__(256, 4)
myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer)
{
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
if (thread < threads)
{
// GROESTL
const uint32_t nounce = startNounce + thread;
uint32_t paddedInput[8];
paddedInput[0] = myriadgroestl_gpu_msg[4 * 0 + (threadIdx.x & 3)];
paddedInput[1] = myriadgroestl_gpu_msg[4 * 1 + (threadIdx.x & 3)];
paddedInput[2] = myriadgroestl_gpu_msg[4 * 2 + (threadIdx.x & 3)];
paddedInput[3] = myriadgroestl_gpu_msg[4 * 3 + (threadIdx.x & 3)];
paddedInput[4] = myriadgroestl_gpu_msg[4 * 4 + (threadIdx.x & 3)];
paddedInput[5] = 0;
paddedInput[6] = 0;
paddedInput[7] = 0;
if((threadIdx.x & 3) == 0)
paddedInput[5] = 0x80;
if((threadIdx.x & 3) == 3)
{
paddedInput[4] = cuda_swab32(nounce);
paddedInput[7] = 0x01000000;
}
uint32_t msgBitsliced[8];
to_bitslice_quad(paddedInput, msgBitsliced);
uint32_t state[8];
groestl512_progressMessage_quad(state, msgBitsliced);
uint32_t out_state[16];
from_bitslice_quad(state, out_state);
if ((threadIdx.x & 0x03) == 0)
{
uint32_t *outpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for(int k=0;k<16;k++) outpHash[k] = out_state[k];
}
}
}
__global__ void __launch_bounds__(2048, 1)
myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nounce = startNounce + thread;
uint32_t out_state[16];
uint32_t *inpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for (int i=0; i < 16; i++)
out_state[i] = inpHash[i];
myriadgroestl_gpu_sha256(out_state);
if (out_state[7] <= pTarget[7])
{
uint32_t tmp = atomicExch(resNounce, nounce);
if (tmp != 0xffffffff)
resNounce[1] = tmp;
}
}
}
// Setup-Funktionen
__host__ void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
{
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id]));
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
// Speicher für Gewinner-Nonce belegen
cudaMalloc(&d_resultNonce[thr_id], 4*sizeof(uint32_t));
// Speicher für temporäreHashes
CUDA_SAFE_CALL(cudaMalloc(&d_outputHashes[thr_id], 16 * sizeof(uint32_t)*threads));
}
__host__ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{
cudaMemcpyToSymbolAsync(myriadgroestl_gpu_msg, data, 80, 0, cudaMemcpyHostToDevice, gpustream[thr_id]);
cudaMemsetAsync(d_resultNonce[thr_id], 0xFF, 4 * sizeof(uint32_t), gpustream[thr_id]);
cudaMemcpyToSymbolAsync(pTarget, pTargetIn, sizeof(uint32_t) * 8, 0, cudaMemcpyHostToDevice, gpustream[thr_id]);
}
__host__ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce)
{
const uint32_t threadsperblock = 256;
const uint32_t threadsperblock2 = 2048;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor=4;
cudaMemsetAsync(d_resultNonce[thr_id], 0xFF, 4 * sizeof(uint32_t), gpustream[thr_id]);
// berechne wie viele Thread Blocks wir brauchen
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
myriadgroestl_gpu_hash_quad<<<grid, block, 0, gpustream[thr_id]>>>(threads, startNounce, d_outputHashes[thr_id]);
dim3 grid2((threads + threadsperblock2-1)/threadsperblock2);
myriadgroestl_gpu_hash_quad2<<<grid2, block, 0, gpustream[thr_id]>>>(threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
CUDA_SAFE_CALL(cudaMemcpyAsync(nounce, d_resultNonce[thr_id], 4*sizeof(uint32_t), cudaMemcpyDeviceToHost, gpustream[thr_id])); cudaStreamSynchronize(gpustream[thr_id]);
}