forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
whisper.py
246 lines (217 loc) · 10.2 KB
/
whisper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# thanks to https://github.com/openai/whisper for a good chunk of MIT licensed code
import sys
import pathlib
import base64
import multiprocessing
import numpy as np
from typing import Optional
from extra.utils import download_file
from tinygrad.state import torch_load, load_state_dict
from tinygrad.helpers import getenv
import tinygrad.nn as nn
from tinygrad.tensor import Tensor
# TODO: you have written this fifteen times
class MultiHeadAttention:
def __init__(self, n_state, n_head):
self.n_head = n_head
self.query = nn.Linear(n_state, n_state)
self.key = nn.Linear(n_state, n_state, bias=False)
self.value = nn.Linear(n_state, n_state)
self.out = nn.Linear(n_state, n_state)
def __call__(self, x:Tensor, xa:Optional[Tensor]=None, mask:Optional[Tensor]=None):
q = self.query(x)
k = self.key(xa or x)
v = self.value(xa or x)
wv, qk = self.qkv_attention(q, k, v, mask)
# NOTE: we aren't returning qk
return self.out(wv)
def qkv_attention(self, q, k, v, mask=None):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.reshape(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.reshape(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.reshape(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k
if mask is not None: qk = qk + mask[:n_ctx, :n_ctx]
w = qk.softmax(-1)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
class ResidualAttentionBlock:
def __init__(self, n_state, n_head, cross_attention=False):
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = nn.LayerNorm(n_state)
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
self.cross_attn_ln = nn.LayerNorm(n_state) if cross_attention else None
self.mlp = [nn.Linear(n_state, n_state*4), Tensor.gelu, nn.Linear(n_state*4, n_state)]
self.mlp_ln = nn.LayerNorm(n_state)
def __call__(self, x, xa=None, mask=None):
x = x + self.attn(self.attn_ln(x), mask=mask)
if self.cross_attn: x = x + self.cross_attn(self.cross_attn_ln(x), xa)
x = x + self.mlp_ln(x).sequential(self.mlp)
return x
class AudioEncoder:
def __init__(self, n_mels, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, **_):
self.conv1 = nn.Conv1d(n_mels, n_audio_state, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(n_audio_state, n_audio_state, kernel_size=3, stride=2, padding=1)
self.blocks = [ResidualAttentionBlock(n_audio_state, n_audio_head) for _ in range(n_audio_layer)]
self.ln_post = nn.LayerNorm(n_audio_state)
self.positional_embedding = Tensor.empty(n_audio_ctx, n_audio_state)
def __call__(self, x):
x = self.conv1(x).gelu()
x = self.conv2(x).gelu()
x = x.permute(0, 2, 1)
x = x + self.positional_embedding[:x.shape[1]]
x = x.sequential(self.blocks)
x = self.ln_post(x)
return x
class TextDecoder:
def __init__(self, n_vocab, n_text_ctx, n_text_state, n_text_head, n_text_layer, **_):
self.token_embedding = nn.Embedding(n_vocab, n_text_state)
self.positional_embedding = Tensor.empty(n_text_ctx, n_text_state)
self.blocks = [ResidualAttentionBlock(n_text_state, n_text_head, cross_attention=True) for _ in range(n_text_layer)]
self.ln = nn.LayerNorm(n_text_state)
#mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
def __call__(self, x, xa):
offset = 0
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
seqlen, start_pos = x.shape[1], 0
mask = np.full((1, 1, seqlen, start_pos + seqlen), float("-inf"), dtype=np.float32)
mask = np.triu(mask, k=start_pos + 1) # TODO: this is hard to do in tinygrad
mask = Tensor(mask)
for block in self.blocks: x = block(x, xa, mask)
x = self.ln(x)
return x @ self.token_embedding.weight.T
class Whisper:
def __init__(self, dims):
self.encoder = AudioEncoder(**dims)
self.decoder = TextDecoder(**dims)
def __call__(self, mel:Tensor, tokens:Tensor):
return self.decoder(tokens, self.encoder(mel))
# TODO: this is tragic. remove this
import functools
import itertools
import torch
import torchaudio
import librosa
@functools.lru_cache(None)
def get_filters(sample_rate, n_fft, n_mels):return torch.tensor(librosa.filters.mel(sr=sample_rate, n_fft=n_fft, n_mels=n_mels))
@functools.lru_cache(None)
def get_window(n_fft): return torch.hann_window(n_fft)
def prep_audio(waveform, sample_rate) -> Tensor:
N_FFT = 400
HOP_LENGTH = 160
N_MELS = 80
stft = torch.stft(waveform, N_FFT, HOP_LENGTH, window=get_window(N_FFT), return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
mel_spec = get_filters(sample_rate, N_FFT, N_MELS) @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
#print(waveform.shape, log_spec.shape)
return log_spec.numpy()
LANGUAGES = {
"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish",
"pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese",
"he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian",
"th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu",
"fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian",
"br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili",
"gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian",
"be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole",
"ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy",
"as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese",
}
BASE = pathlib.Path(__file__).parent.parent / "weights"
def get_encoding(n_vocab_in):
download_file("https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken", BASE / "gpt2.tiktoken")
ranks = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in open(BASE / "gpt2.tiktoken") if line)}
n_vocab = len(ranks)
specials = [
"<|endoftext|>",
"<|startoftranscript|>",
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
]
special_tokens = dict(zip(specials, itertools.count(n_vocab)))
n_vocab += len(specials)
assert n_vocab == n_vocab_in
import tiktoken
return tiktoken.Encoding(
name="bob",
explicit_n_vocab=n_vocab,
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
mergeable_ranks=ranks,
special_tokens=special_tokens)
def img(x):
import matplotlib.pyplot as plt
plt.imshow(x.numpy())
plt.show()
RATE = 16000
CHUNK = 1600
RECORD_SECONDS = 10
def listener(q):
prep_audio(torch.zeros(300), RATE)
import pyaudio
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate=RATE, input=True, frames_per_buffer=CHUNK)
print("listening")
for _ in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
waveform = ((np.frombuffer(data, np.int16)/32768).astype(np.float32)*3).reshape(1, -1)
q.put(waveform)
print("done listening")
if __name__ == "__main__":
if getenv("SMALL"):
fn = BASE / "whisper-small.en.pt"
download_file("https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", fn)
else:
fn = BASE / "whisper-tiny.en.pt"
download_file("https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", fn)
state = torch_load(fn)
model = Whisper(state['dims'])
load_state_dict(model, state['model_state_dict'])
enc = get_encoding(state['dims']['n_vocab'])
if len(sys.argv) > 1:
# offline
waveform, sample_rate = torchaudio.load(sys.argv[1], normalize=True)
log_spec = prep_audio(waveform, sample_rate)
lst = [enc._special_tokens["<|startoftranscript|>"]]
dat = model.encoder(Tensor(log_spec)).realize()
for i in range(50):
out = model.decoder(Tensor([lst]), dat)
out.realize()
idx = out[0,-1].numpy().argmax()
lst.append(idx)
print(enc.decode(lst))
else:
# online
q = multiprocessing.Queue()
p = multiprocessing.Process(target=listener, args=(q,))
p.daemon = True
p.start()
lst = [enc._special_tokens["<|startoftranscript|>"]]
total = None
did_read = False
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
while not q.empty() or total is None:
waveform = q.get()
if total is None: total = waveform
else: total = np.concatenate([total, waveform], axis=1)
did_read = True
if did_read:
last_total = total.shape[1]
log_spec = prep_audio(torch.Tensor(total), RATE)
encoded_audio = model.encoder(Tensor(log_spec)).realize()
out = model.decoder(Tensor([lst]), encoded_audio).realize()
idx = out[0,-1].numpy().argmax()
lst.append(idx)
dec = enc.decode(lst)
print(dec) # DO NOT REMOVE PRINT. IT'S VERY IMPORTANT
if dec.endswith("<|endoftext|>"):
#total = total[:, 320*(len(lst)-1):]
lst = [enc._special_tokens["<|startoftranscript|>"]]