-
Notifications
You must be signed in to change notification settings - Fork 2
/
stocker.py
569 lines (503 loc) · 25.2 KB
/
stocker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import copy
import statistics
import astropy.stats
import numpy as np
import abc
#
# Value formatting functions:
#
def _format_currency(value):
return "${:,.2f}".format(value)
def _format_percentage(decimal):
return ("%0.1f%%" % (decimal*100.0))
#
# Inflation helper functions:
#
def present_value(value, year, rate=0.035):
assert year >= 0, "Year cannot be negative."
return value*(1/(1 + rate)**year)
def future_value(value, year, rate=0.035):
assert year >= 0, "Year cannot be negative."
return value*(1 + rate)**year
#
# Define a positition
#
# A position consists of an named allocation to a specific
# investment. The investment is assigned a projected average
# return and standard deviation, such that its future performance
# can be simulated:
class Position(object):
# ave return and std are in percentage per time unit:
def __init__(self, name, ave_return, std_dev, value=0.0):
self.name = name
self.value = float(value)
self.ave_return = float(ave_return)/100.0
self.std_dev = float(std_dev)/100.0
def trade(self, amount):
self.value += float(amount)
if self.value < 0.0:
self.value = 0.0
# Simulate 1 time unit:
def simulate(self):
# Calculate return as ave return + normal distribution of std deviation:
this_return = 0.0
if self.value > 0.0:
this_return += self.ave_return*self.value
if self.std_dev > 0.0:
this_return += np.random.normal(0, self.value*self.std_dev)
self.value += this_return
if self.value < 0.0:
self.value = 0.0
def __repr__(self):
return _format_currency(self.value)
def __str__(self):
return self.__repr__()
#
# Define the historical asset class return and risk:
#
# Data sources: Ibbotson Associates, MSCI, Standard & Poor’s, World Gold Council, BP.com,
# US Energy Information Administration, Robert Shiller Online, MIT Center For Real Estate, Yahoo Finance.
# Calculations are based on the long-term historical performance of asset classes using a combination of
# indexes and ETFs as proxies: S&P 500, MSCI EAFE and MSCI ACWI ex-US, 10 Year U.S. Treasuries, S&P/
# Citigroup International Treasury Bond Ex-US, 30 Day T-Bills, as well as IEF, IGOV, VNQ, IAU, and DBC. Prior
# to 2007, the Alternative asset class is represented by a hypothetical index of 50% real estate and a 50%
# gold/oil combination. Each year thereafter it is comprised of 50% real estate and a 50% blend of diversified
# commodities and gold ETFs. Portfolio standard deviation, correlation, and expected returns are based on
# average annual performance included in source data: domestic equities since 1926, international equities since
# 1970, domestic fixed since 1926, international fixed since 2002, alternatives since 1970 and cash since 1926.
#
def _predefined_position(name, ave_return, std_dev):
def inner(value=0.0):
return Position(name, ave_return, std_dev, value)
return inner
US_Stocks = _predefined_position("Domestic Equities", ave_return=10.2, std_dev=19.8)
International_Stocks = _predefined_position("International Equities", ave_return=9.2, std_dev=22.1)
US_Bonds = _predefined_position("Domestic Fixed Income", ave_return=5.3, std_dev=5.8)
International_Bonds = _predefined_position("International Fixed Income", ave_return=5.5, std_dev=9.1)
Alternatives = _predefined_position("Alternatives", ave_return=6.1, std_dev=16.1)
Cash = _predefined_position("Cash", ave_return=3.4, std_dev=3.1)
#
# More historical returns from https://www.bogleheads.org/wiki/Historical_and_expected_returns:
#
# Series Geometric Mean Arithmetic Mean Standard Deviation
# Large Company Stocks 10.4% 12.3% 20.2%
# Small Company Stocks 12.6% 17.4% 32.9%
# Long-term Corporate Bonds 5.9% 6.2% 8.5%
# Long-term Government Bonds 5.3% 5.5% 5.7%
# U.S. Treasury Bills 3.7% 3.8% 3.1%
#
Large_Cap_Stocks = _predefined_position("Large Company Stocks", ave_return=10.4, std_dev=20.2)
Small_Cap_Stocks = _predefined_position("Small Company Stocks", ave_return=12.6, std_dev=32.9)
Long_Term_Corp_Bonds = _predefined_position("Long-term Corporate Bonds", ave_return=5.9, std_dev=8.5)
Long_Term_Gov_Bonds = _predefined_position("Long-term Government Bonds", ave_return=5.3, std_dev=5.7)
US_Treasury_Bills = _predefined_position("U.S. Treasury Bills", ave_return=3.8, std_dev=3.1)
#
# More historical returns from Morningstar:
# http://awgmain.morningstar.com/webhelp/FAQs/What_assumptions_goalplans.htm
#
# We estimate these assumptions based on a combination of the current market information and
# the historical data going back to 1926 for US equities and 1970 for bonds. The table below
# lists the indices, arithmetic return, and standard deviation we use for each asset class:
#
# Asset Class Return Data Series (Benchmark) Expected Return Standard Deviation
# U.S. Large-cap Growth Stocks Russell Top 200 Growth 8.25% 21.82%
# U.S. Large-cap Value Stocks Russell Top 200 Value 9.60% 17.47%
# U.S. Mid-cap Growth Stocks Russell Midcap Growth 10.41% 23.22%
# U.S. Mid-cap Value Stocks Russell Midcap Value 12.48% 19.17%
# U.S. Small-cap Growth Stocks Russell 2000 Growth 9.98% 27.62%
# U.S. Small-cap Value Stocks Russell 2000 Value 13.29% 22.46%
# Non-U.S. Dev Stocks MSCI EAFE 10.02% 20.62%
# Non-U.S. Emrg Stocks MMSCI Emerging Mkts 14.35% 29.65%
# U.S. Investment Grade Bonds Barclays US Agg Bond TR 3.36% 7.08%
# U.S. High-Yield Bonds Barclay US Corporate High Yield TR 7.37% 11.33%
# Non-U.S. Dev Bonds Citi WGBI NonUSD USD 3.08% 11.22%
# Cash Citi Treasurey Bill 3 Mon USD 0.97% 1.67%
# Commodities DJ UBS Commodity TR 4.48% 17.86%
# U.S. Real Estate FTSE NAREIT-Equity 8.92% 23.55%
US_Large_Cap_Growth_Stocks = _predefined_position("U.S. Large-cap Growth Stocks", ave_return=8.25, std_dev=21.82)
US_Large_Cap_Value_Stocks = _predefined_position("U.S. Large-cap Value Stocks", ave_return=9.60, std_dev=17.47)
US_Mid_Cap_Growth_Stocks = _predefined_position("U.S. Mid-cap Growth Stocks", ave_return=10.41, std_dev=23.22)
US_Mid_Cap_Value_Stocks = _predefined_position("U.S. Mid-cap Value Stocks", ave_return=12.48, std_dev=19.17)
US_Small_Cap_Growth_Stocks = _predefined_position("U.S. Small-cap Growth Stocks", ave_return=9.98, std_dev=27.62)
US_Small_Cap_Value_Stocks = _predefined_position("U.S. Small-cap Value Stocks", ave_return=13.29, std_dev=22.46)
International_Dev_Stocks = _predefined_position("Non-U.S. Dev Stocks", ave_return=10.02, std_dev=20.62)
International_Emrg_Stocks = _predefined_position("Non-U.S. Emrg Stocks", ave_return=14.35, std_dev=29.65)
US_Investment_Grd_Bonds = _predefined_position("U.S. Investment Grade Bonds", ave_return=3.36, std_dev=7.08)
US_High_Yield_Bonds = _predefined_position("U.S. High-Yield Bonds", ave_return=7.37, std_dev=11.33)
International_Dev_Bonds = _predefined_position("Non-U.S. Dev Bonds", ave_return=3.08, std_dev=11.22)
Three_Mon_Treasury_Bills = _predefined_position("Treasurey Bill 3 Mon", ave_return=0.97, std_dev=1.67)
Commodities = _predefined_position("Commodities", ave_return=4.48, std_dev=17.86)
US_Real_Estate = _predefined_position("U.S. Real Estate", ave_return=8.92, std_dev=23.55)
#
# Define a portfolio:
#
# A portfollio is a collection of positions (see above) given
# a specific weighting to each. A portfolio can be rebalanced
# at any time to readjust the amount of value stored in each
# position.
class Portfolio(object):
def __init__(self, name, positions, weights, value=0.0):
self.name = name
self.positions = positions
self.set_weights(weights)
assert value >= 0.0, "Initial value must be positive or zero."
self.trade(value)
def set_weights(self, weights):
assert len(weights) == len(self.positions), "The number of weights must equal the number of positions"
assert all([w >= 0.0 for w in weights]), "All weights must be positive: " + str(weights)
self.total_weight = float(sum(weights))
self.weights = [float(w)/self.total_weight for w in weights]
# Simulate 1 time unit:
def simulate(self):
for position in self.positions:
position.simulate()
def value(self):
return sum([p.value for p in self.positions])
def trade(self, amount):
for w, p in zip(self.weights, self.positions):
p.trade(amount*w)
def rebalance(self, new_weights=None):
value = self.value()
# If new weights were provided, apply those prior to
# rebalancing:
if new_weights:
self.set_weights(new_weights)
# Rebalance:
if value > 0.0:
for w, p in zip(self.weights, self.positions):
correction = w * value - p.value
p.trade(correction)
new_value = self.value()
# Make sure rebalancing didn't change total balance:
assert new_value < value + 1.0, str(new_value) + " < " + str(value) + " + 1.0"
assert new_value > value - 1.0, str(new_value) + " > " + str(value) + " - 1.0"
def __repr__(self):
value = self.value()
template = "{0:<30}|{1:>12}|{2:>15}"
strn = "-----------------------------------------------------------\n"
strn += template.format("Position", "Allocation ", "Value") + "\n"
strn += "-----------------------------------------------------------\n"
for w, p in zip(self.weights, self.positions):
if value > 0.0:
strn += template.format(p.name, _format_percentage(p.value/value), str(p)) + "\n"
else:
strn += template.format(p.name, _format_percentage(w), str(p)) + "\n"
strn += "-----------------------------------------------------------\n"
strn += template.format("Total", "100.0% ", _format_currency(value)) + "\n"
strn += "-----------------------------------------------------------\n"
return strn
def __str__(self):
return self.__repr__()
#
# Define some common potfolios:
#
def _predefined_portfolio(name, positions, weights):
def inner(value=0.0):
return Portfolio(name, positions, weights, value)
return inner
# All Stocks portfolio 70% US, 30% International
All_Stocks = _predefined_portfolio(name="All Stocks", positions=[US_Stocks(), International_Stocks()], weights=[7, 3])
# All Bonds portfolio 70% US, 30% International
All_Bonds = _predefined_portfolio(name="All Bonds", positions=[US_Bonds(), International_Bonds()], weights=[7, 3])
# All Stocks portfolio 100% US
All_US_Stocks = _predefined_portfolio(name="All Stocks", positions=[US_Stocks()], weights=[1])
# All Bonds portfolio 100% US
All_US_Bonds = _predefined_portfolio(name="All Bonds", positions=[US_Bonds()], weights=[1])
# 50/50 Stocks and bonds with 70% US and 30% International
Fifty_Fifty = _predefined_portfolio(name="All Bonds", positions=[US_Stocks(), International_Stocks(), US_Bonds(), International_Bonds()], weights=[7, 3, 7, 3])
# 60/40 Stocks and bonds with 70% US and 30% International
Sixty_Forty = _predefined_portfolio(name="All Bonds", positions=[US_Stocks(), International_Stocks(), US_Bonds(), International_Bonds()], weights=[7*6, 3*6, 7*4, 3*4])
#
# Define Scenarios:
#
# Each scenario class defines a savings scenario which has specific
# parameters and behavior associated with a specific saving strategy.
# Scenario base class:
# This provides common functionality for all scenarios:
class _Scenario_Base(metaclass=abc.ABCMeta):
def __init__(self, name, num_years, portfolio, inflation_rate_perc=3.5, rebalance=True):
self.name = name
self.portfolio = copy.deepcopy(portfolio)
self.num_years = int(num_years)
self.inflation_rate = float(inflation_rate_perc)/100.0
self.rebalance = rebalance
self.history = [copy.deepcopy(portfolio)]
self.uncorrected_history = [copy.deepcopy(portfolio)]
self.returns = []
self.uncorrected_returns = []
def reset(self):
self.portfolio = copy.deepcopy(self.history[0])
self.history = [copy.deepcopy(self.portfolio)]
self.uncorrected_history = [copy.deepcopy(self.portfolio)]
self.returns = []
self.uncorrected_returns = []
# Run the entire scenario:
@abc.abstractmethod
def run(self): pass
# Helper method to simulate a single time step:
def _run(self, start_year=0):
# Get current value:
uncorrected_prev_value = self.portfolio.value()
# Simulate a year of growth:
self.portfolio.simulate()
# Get the new value:
uncorrected_value = self.portfolio.value()
# Rebalance portfolio to match original allocation weights:
if self.rebalance:
self.portfolio.rebalance()
# Correct the values in the portfolio for inflation to report
# numbers in today's dollars:
# Using the present value function to calculate what our money is actually worth with
# inflation: http://financeformulas.net/present_value.html
year = len(self.history) + start_year
assert year >= 0, "Year cannot be negative."
corrected_value = present_value(uncorrected_value, year, self.inflation_rate)
correction = corrected_value - uncorrected_value
p = copy.deepcopy(self.portfolio)
p.trade(correction)
# Save the corrected portfolio history:
self.history.append(p)
corrected_prev_value = uncorrected_prev_value
if year > 0:
corrected_prev_value = uncorrected_prev_value*(1/(1 + self.inflation_rate)**(year-1))
if corrected_prev_value > 0.0:
return_perc = (corrected_value - corrected_prev_value)/corrected_prev_value
self.returns.append(return_perc)
else:
self.returns.append(0.0)
# Save the uncorrected porfolio in the history:
self.uncorrected_history.append(copy.deepcopy(self.portfolio))
if uncorrected_prev_value > 0.0:
return_perc = (uncorrected_value - uncorrected_prev_value)/uncorrected_prev_value
self.uncorrected_returns.append(return_perc)
else:
self.uncorrected_returns.append(0.0)
def plot(self, figure=None, color='steelblue', label="Value", smooth=False):
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
# Find the median and 10th percentile data sets:
data = [p.value()/1000000.0 for p in self.history]
# Plot data:
if figure:
plt.figure(figure.number)
else:
plt.figure()
if smooth:
amount = min(9, int(len(data)/5))
amount = int(amount/2) * 2 + 1
order = 3
if order >= amount:
order = amount - 1
data = savgol_filter(data, amount, order)
plt.plot(data, lw=1, color=color, label=label + ' (' + _format_currency(self.history[-1].value()) + ')')
plt.fill_between(list(range(len(data))), data, interpolate=False, facecolor=color, alpha=0.5)
plt.ylim(bottom=0.0)
plt.xlim(0, len(data) - 1)
plt.xlabel('Year')
plt.ylabel('Portfolio Value ($M)')
plt.title('Portfolio Value Over Time')
plt.legend()
plt.grid(True)
def results(self):
strn = "'" + self.name + "' Scenario:\n"
strn += "Portfolio: " + self.portfolio.name + " Portfolio\n"
strn += "Duration: " + str(len(self.history)-1) + " years\n"
strn += "Inflation Rate: " + _format_percentage(self.inflation_rate) + "\n"
strn += "Annual Rebalancing: " + ("Yes" if self.rebalance else "No") + "\n"
strn += "\n"
strn += self.portfolio.name + " Portfolio Start:\n"
strn += str(self.history[0])
strn += "\n"
# strn += self.portfolio.name + " Portfolio End:\n"
# strn += str(self.uncorrected_history[-1])
# strn += "\n"
strn += self.portfolio.name + " Portfolio End (Inflation Corrected at " + _format_percentage(self.inflation_rate) + "):\n"
strn += str(self.history[-1])
strn += "\n"
strn += "Raw Metrics:\n"
strn += "Ave Return: " + _format_percentage(sum(self.uncorrected_returns)/len(self.uncorrected_returns)) + "\n"
strn += "Best Return: " + _format_percentage(max(self.uncorrected_returns)) + " (year " + str(self.returns.index(max(self.returns))) + ")\n"
strn += "Worst Return: " + _format_percentage(min(self.uncorrected_returns)) + " (year " + str(self.returns.index(min(self.returns))) + ")\n"
strn += "\n"
strn += "Inflation Corrected Metrics at " + _format_percentage(self.inflation_rate) + ":\n"
strn += "Ave Return: " + _format_percentage(sum(self.returns)/len(self.returns)) + "\n"
strn += "Best Return: " + _format_percentage(max(self.returns)) + " (year " + str(self.returns.index(max(self.returns))) + ")\n"
strn += "Worst Return: " + _format_percentage(min(self.returns)) + " (year " + str(self.returns.index(min(self.returns))) + ")\n"
return strn
# Standard scenario:
# This scenario allows a single portfolio to build for a configurable
# number of years. Parameters are provided to account for inflation,
# rebalnce the portfolio yearly, add/subtract a static value yearly,
# and to adjust the addition/subtraction by some percentage over time.
# An "end_weights" field also exists to provide a linear transition
# from the portfolio's weightings to the weighting of the "end_weights"
# field over the duration of the scenario. This field can be used to
# simulate an age-based portfolio, transferring assets from stocks to
# bonds as the investment ages.
# This simple strategy should work for many real life savings projections.
class Scenario(_Scenario_Base):
def __init__(self, name, portfolio, num_years, inflation_rate_perc=3.5, rebalance=True, annual_contribution=0.0, annual_contribution_increase_perc=0.0, end_weights=None):
self.addition = annual_contribution
self.addition_increase = annual_contribution_increase_perc/100.0
self.end_weights = end_weights
self.slopes = None
self.start_weights = None
if self.end_weights:
assert len(end_weights) == len(portfolio.weights), "Length of end weight vector and length of start weights in portfolio must be equal."
self.slopes = [float(w_end - w_start) / float(num_years - 1) for w_end, w_start in zip(self.end_weights, portfolio.weights)]
self.start_weights = copy.deepcopy(portfolio.weights)
# Call the base class init:
super(Scenario, self).__init__(name, num_years, portfolio, inflation_rate_perc, rebalance)
def _run(self, start_year=0):
to_add = self.addition
for x in range(self.num_years):
# Calculate new weights and rebalance portfolio:
if self.slopes:
new_weights = [s*x + w for w, s in zip(self.start_weights, self.slopes)]
self.portfolio.rebalance(new_weights)
# Calculate amount to add to portfolio:
to_add += to_add*self.addition_increase
if to_add != 0.0:
self.portfolio.trade(to_add)
# Run the base class simulation:
super(Scenario, self)._run(start_year)
def run(self):
self._run()
# Piecewise scenario:
# This scenario allows the combinations of other scenarios in a piecewise
# fashion. A list of scenarios is provided and each is executed in turn.
# Note: The monitary values of all portfolios except in the first scenario are ignored.
# After the first scenario is run, the value from that portfolio is transfered
# to the second portfolio, and so on.
class Piecewise_Scenario(_Scenario_Base):
def __init__(self, name, scenarios):
self.scenarios = scenarios
first_scenario = self.scenarios[0]
super(Piecewise_Scenario, self).__init__(name, first_scenario.num_years, first_scenario.portfolio)
def reset(self):
for scenario in self.scenarios:
scenario.reset()
super(Piecewise_Scenario, self).reset()
def run(self):
value = self.scenarios[0].portfolio.value()
year = 0
for scenario in self.scenarios:
# First zero the scenario portfolio value:
scenario.portfolio.trade(-1*scenario.portfolio.value())
# Set scenario portfolio value with the value of the
# previous scenario:
scenario.portfolio.trade(value)
# Run scenario:
scenario._run(year)
year += len(scenario.history) - 1
# Save the final portfolio value:
value = scenario.portfolio.value()
# Save data:
self.history.extend(copy.deepcopy(scenario.history[1:]))
self.uncorrected_history.extend(copy.deepcopy(scenario.uncorrected_history[1:]))
self.returns.extend(copy.deepcopy(scenario.returns))
self.uncorrected_returns.extend(copy.deepcopy(scenario.uncorrected_returns))
def _remove_outliers(values):
# Remove high outliers:
med = statistics.median_low(values)
MAD = astropy.stats.median_absolute_deviation(values)
if MAD > 0.0:
values = [v for v in values if v < (med + 4*MAD)]
med = statistics.median_low(values)
MAD = astropy.stats.median_absolute_deviation(values)
if MAD > 0.0:
values = [v for v in values if v < (med + 4*MAD)]
med = statistics.median_low(values)
MAD = astropy.stats.median_absolute_deviation(values)
if MAD > 0.0:
values = [v for v in values if v < (med + 4*MAD)]
return values
#
# The Monte Carlo class
#
# This class takes in a scenario and runs it a variable number of times,
# storing the result for each run. After running, statistics can be
# gathered on aggregate outcomes of the executed scenarios.
class Monte_Carlo(object):
def __init__(self, scenario):
self.scenario = copy.deepcopy(scenario)
self.scenario.reset()
self.runs = []
self.values = []
self.raw_values = []
def run(self, n):
for x in range(n):
new_scenario = copy.deepcopy(self.scenario)
new_scenario.run()
self.raw_values.append(new_scenario.history[-1].value())
self.runs.append(new_scenario)
def results(self, goal=None, remove_outliers=False):
if remove_outliers:
self.values = _remove_outliers(self.raw_values)
else:
self.values = self.raw_values
strn = "Monte Carlo Results for the '" + self.scenario.name + "' Scenario:\n"
strn += "\n"
strn += "Number of Runs: " + str(len(self.runs)) + "\n"
strn += "High-end Outliers Removed: " + str(len(self.raw_values) - len(self.values)) + "\n"
strn += "\n"
strn += "Inflation Corrected Portfolio Final Values:\n"
strn += " Average: " + _format_currency(statistics.mean(self.values)) + "\n"
strn += " Std Dev: " + _format_currency(statistics.stdev(self.values)) + "\n"
strn += "\n"
strn += " Median: " + _format_currency(statistics.median_low(self.values)) + "\n"
strn += " MAD: " + _format_currency(astropy.stats.median_absolute_deviation(self.values)) + "\n"
strn += "\n"
strn += " Minimum: " + _format_currency(min(self.values)) + "\n"
strn += " 10th Perc: " + _format_currency(np.percentile(self.values, 10, interpolation='nearest')) + "\n"
strn += " Median: " + _format_currency(statistics.median_low(self.values)) + "\n"
strn += " 90th Perc: " + _format_currency(np.percentile(self.values, 90, interpolation='nearest')) + "\n"
strn += " Maximum: " + _format_currency(max(self.values)) + "\n"
strn += "\n"
if goal != None:
good_runs = len([v for v in self.raw_values if v > goal])
strn += "Savings Goal: " + _format_currency(goal) + "\n"
strn += "Likelihood of Meeting Goal: " + _format_percentage(good_runs/len(self.raw_values)) + "\n"
return strn
def histogram(self, remove_outliers=True):
if remove_outliers:
self.values = _remove_outliers(self.raw_values)
else:
self.values = self.raw_values
import matplotlib.pyplot as plt
values = [v/1000000.0 for v in self.values]
weights = np.ones_like(values)/float(len(values))*100.0
plt.figure()
n, bins, patches = plt.hist(values, 30, weights=weights, facecolor='0.5', alpha=0.75)
plt.axvline(x=statistics.median_low(values), color='g')
plt.axvline(x=np.percentile(values, 10, interpolation='nearest'), color='r')
two_MAD = statistics.median_low(values) - 2*astropy.stats.median_absolute_deviation(values)
if two_MAD < 0.0:
two_MAD = 0.0
plt.axvline(x=two_MAD, color='m')
two_MAD = statistics.median_low(self.values) - 2*astropy.stats.median_absolute_deviation(self.values)
if two_MAD < 0.0:
two_MAD = 0.0
plt.legend([ \
'Median (' + _format_currency(statistics.median_low(self.values)) + ')', \
'10th Perc (' + _format_currency(np.percentile(self.values, 10, interpolation='nearest')) + ')', \
r'-2*MAD (' + _format_currency(two_MAD) + ')', \
])
plt.xlabel('Portfolio Value ($M)')
plt.ylabel('Probability %')
plt.title('Final Portfolio Value Probability Distribution (n=' + str(len(self.runs)) + ")")
plt.grid(True)
def plot(self, smooth=False):
import matplotlib.pyplot as plt
# Find the median and 10th percentile data sets:
med = statistics.median_low(self.values)
ten = np.percentile(self.values, 10, interpolation='nearest')
med_scenario = self.runs[self.raw_values.index(med)]
tenth_scenario = self.runs[self.raw_values.index(ten)]
# Plot the median and 10th percentile scenario:
f = plt.figure()
med_scenario.plot(figure=f, color='lightblue', label='Median', smooth=smooth)
tenth_scenario.plot(figure=f, color='steelblue', label='10th Perc', smooth=smooth)
def show_plots():
import matplotlib.pyplot as plt
plt.show()