forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
381 lines (345 loc) · 16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Build model for inference or training."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
import nets
from ops import icp_grad # pylint: disable=unused-import
from ops.icp_op import icp
import project
import reader
import tensorflow as tf
import util
gfile = tf.gfile
slim = tf.contrib.slim
NUM_SCALES = 4
class Model(object):
"""Model code from SfMLearner."""
def __init__(self,
data_dir=None,
is_training=True,
learning_rate=0.0002,
beta1=0.9,
reconstr_weight=0.85,
smooth_weight=0.05,
ssim_weight=0.15,
icp_weight=0.0,
batch_size=4,
img_height=128,
img_width=416,
seq_length=3,
legacy_mode=False):
self.data_dir = data_dir
self.is_training = is_training
self.learning_rate = learning_rate
self.reconstr_weight = reconstr_weight
self.smooth_weight = smooth_weight
self.ssim_weight = ssim_weight
self.icp_weight = icp_weight
self.beta1 = beta1
self.batch_size = batch_size
self.img_height = img_height
self.img_width = img_width
self.seq_length = seq_length
self.legacy_mode = legacy_mode
logging.info('data_dir: %s', data_dir)
logging.info('learning_rate: %s', learning_rate)
logging.info('beta1: %s', beta1)
logging.info('smooth_weight: %s', smooth_weight)
logging.info('ssim_weight: %s', ssim_weight)
logging.info('icp_weight: %s', icp_weight)
logging.info('batch_size: %s', batch_size)
logging.info('img_height: %s', img_height)
logging.info('img_width: %s', img_width)
logging.info('seq_length: %s', seq_length)
logging.info('legacy_mode: %s', legacy_mode)
if self.is_training:
self.reader = reader.DataReader(self.data_dir, self.batch_size,
self.img_height, self.img_width,
self.seq_length, NUM_SCALES)
self.build_train_graph()
else:
self.build_depth_test_graph()
self.build_egomotion_test_graph()
# At this point, the model is ready. Print some info on model params.
util.count_parameters()
def build_train_graph(self):
self.build_inference_for_training()
self.build_loss()
self.build_train_op()
self.build_summaries()
def build_inference_for_training(self):
"""Invokes depth and ego-motion networks and computes clouds if needed."""
(self.image_stack, self.intrinsic_mat, self.intrinsic_mat_inv) = (
self.reader.read_data())
with tf.name_scope('egomotion_prediction'):
self.egomotion, _ = nets.egomotion_net(self.image_stack, is_training=True,
legacy_mode=self.legacy_mode)
with tf.variable_scope('depth_prediction'):
# Organized by ...[i][scale]. Note that the order is flipped in
# variables in build_loss() below.
self.disp = {}
self.depth = {}
if self.icp_weight > 0:
self.cloud = {}
for i in range(self.seq_length):
image = self.image_stack[:, :, :, 3 * i:3 * (i + 1)]
multiscale_disps_i, _ = nets.disp_net(image, is_training=True)
multiscale_depths_i = [1.0 / d for d in multiscale_disps_i]
self.disp[i] = multiscale_disps_i
self.depth[i] = multiscale_depths_i
if self.icp_weight > 0:
multiscale_clouds_i = [
project.get_cloud(d,
self.intrinsic_mat_inv[:, s, :, :],
name='cloud%d_%d' % (s, i))
for (s, d) in enumerate(multiscale_depths_i)
]
self.cloud[i] = multiscale_clouds_i
# Reuse the same depth graph for all images.
tf.get_variable_scope().reuse_variables()
logging.info('disp: %s', util.info(self.disp))
def build_loss(self):
"""Adds ops for computing loss."""
with tf.name_scope('compute_loss'):
self.reconstr_loss = 0
self.smooth_loss = 0
self.ssim_loss = 0
self.icp_transform_loss = 0
self.icp_residual_loss = 0
# self.images is organized by ...[scale][B, h, w, seq_len * 3].
self.images = [{} for _ in range(NUM_SCALES)]
# Following nested lists are organized by ...[scale][source-target].
self.warped_image = [{} for _ in range(NUM_SCALES)]
self.warp_mask = [{} for _ in range(NUM_SCALES)]
self.warp_error = [{} for _ in range(NUM_SCALES)]
self.ssim_error = [{} for _ in range(NUM_SCALES)]
self.icp_transform = [{} for _ in range(NUM_SCALES)]
self.icp_residual = [{} for _ in range(NUM_SCALES)]
self.middle_frame_index = util.get_seq_middle(self.seq_length)
# Compute losses at each scale.
for s in range(NUM_SCALES):
# Scale image stack.
height_s = int(self.img_height / (2**s))
width_s = int(self.img_width / (2**s))
self.images[s] = tf.image.resize_area(self.image_stack,
[height_s, width_s])
# Smoothness.
if self.smooth_weight > 0:
for i in range(self.seq_length):
# In legacy mode, use the depth map from the middle frame only.
if not self.legacy_mode or i == self.middle_frame_index:
self.smooth_loss += 1.0 / (2**s) * self.depth_smoothness(
self.disp[i][s], self.images[s][:, :, :, 3 * i:3 * (i + 1)])
for i in range(self.seq_length):
for j in range(self.seq_length):
# Only consider adjacent frames.
if i == j or abs(i - j) != 1:
continue
# In legacy mode, only consider the middle frame as target.
if self.legacy_mode and j != self.middle_frame_index:
continue
source = self.images[s][:, :, :, 3 * i:3 * (i + 1)]
target = self.images[s][:, :, :, 3 * j:3 * (j + 1)]
target_depth = self.depth[j][s]
key = '%d-%d' % (i, j)
# Extract ego-motion from i to j
egomotion_index = min(i, j)
egomotion_mult = 1
if i > j:
# Need to inverse egomotion when going back in sequence.
egomotion_mult *= -1
# For compatiblity with SfMLearner, interpret all egomotion vectors
# as pointing toward the middle frame. Note that unlike SfMLearner,
# each vector captures the motion to/from its next frame, and not
# the center frame. Although with seq_length == 3, there is no
# difference.
if self.legacy_mode:
if egomotion_index >= self.middle_frame_index:
egomotion_mult *= -1
egomotion = egomotion_mult * self.egomotion[:, egomotion_index, :]
# Inverse warp the source image to the target image frame for
# photometric consistency loss.
self.warped_image[s][key], self.warp_mask[s][key] = (
project.inverse_warp(source,
target_depth,
egomotion,
self.intrinsic_mat[:, s, :, :],
self.intrinsic_mat_inv[:, s, :, :]))
# Reconstruction loss.
self.warp_error[s][key] = tf.abs(self.warped_image[s][key] - target)
self.reconstr_loss += tf.reduce_mean(
self.warp_error[s][key] * self.warp_mask[s][key])
# SSIM.
if self.ssim_weight > 0:
self.ssim_error[s][key] = self.ssim(self.warped_image[s][key],
target)
# TODO(rezama): This should be min_pool2d().
ssim_mask = slim.avg_pool2d(self.warp_mask[s][key], 3, 1, 'VALID')
self.ssim_loss += tf.reduce_mean(
self.ssim_error[s][key] * ssim_mask)
# 3D loss.
if self.icp_weight > 0:
cloud_a = self.cloud[j][s]
cloud_b = self.cloud[i][s]
self.icp_transform[s][key], self.icp_residual[s][key] = icp(
cloud_a, egomotion, cloud_b)
self.icp_transform_loss += 1.0 / (2**s) * tf.reduce_mean(
tf.abs(self.icp_transform[s][key]))
self.icp_residual_loss += 1.0 / (2**s) * tf.reduce_mean(
tf.abs(self.icp_residual[s][key]))
self.total_loss = self.reconstr_weight * self.reconstr_loss
if self.smooth_weight > 0:
self.total_loss += self.smooth_weight * self.smooth_loss
if self.ssim_weight > 0:
self.total_loss += self.ssim_weight * self.ssim_loss
if self.icp_weight > 0:
self.total_loss += self.icp_weight * (self.icp_transform_loss +
self.icp_residual_loss)
def gradient_x(self, img):
return img[:, :, :-1, :] - img[:, :, 1:, :]
def gradient_y(self, img):
return img[:, :-1, :, :] - img[:, 1:, :, :]
def depth_smoothness(self, depth, img):
"""Computes image-aware depth smoothness loss."""
depth_dx = self.gradient_x(depth)
depth_dy = self.gradient_y(depth)
image_dx = self.gradient_x(img)
image_dy = self.gradient_y(img)
weights_x = tf.exp(-tf.reduce_mean(tf.abs(image_dx), 3, keepdims=True))
weights_y = tf.exp(-tf.reduce_mean(tf.abs(image_dy), 3, keepdims=True))
smoothness_x = depth_dx * weights_x
smoothness_y = depth_dy * weights_y
return tf.reduce_mean(abs(smoothness_x)) + tf.reduce_mean(abs(smoothness_y))
def ssim(self, x, y):
"""Computes a differentiable structured image similarity measure."""
c1 = 0.01**2
c2 = 0.03**2
mu_x = slim.avg_pool2d(x, 3, 1, 'VALID')
mu_y = slim.avg_pool2d(y, 3, 1, 'VALID')
sigma_x = slim.avg_pool2d(x**2, 3, 1, 'VALID') - mu_x**2
sigma_y = slim.avg_pool2d(y**2, 3, 1, 'VALID') - mu_y**2
sigma_xy = slim.avg_pool2d(x * y, 3, 1, 'VALID') - mu_x * mu_y
ssim_n = (2 * mu_x * mu_y + c1) * (2 * sigma_xy + c2)
ssim_d = (mu_x**2 + mu_y**2 + c1) * (sigma_x + sigma_y + c2)
ssim = ssim_n / ssim_d
return tf.clip_by_value((1 - ssim) / 2, 0, 1)
def build_train_op(self):
with tf.name_scope('train_op'):
optim = tf.train.AdamOptimizer(self.learning_rate, self.beta1)
self.train_op = slim.learning.create_train_op(self.total_loss, optim)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.incr_global_step = tf.assign(self.global_step, self.global_step + 1)
def build_summaries(self):
"""Adds scalar and image summaries for TensorBoard."""
tf.summary.scalar('total_loss', self.total_loss)
tf.summary.scalar('reconstr_loss', self.reconstr_loss)
if self.smooth_weight > 0:
tf.summary.scalar('smooth_loss', self.smooth_loss)
if self.ssim_weight > 0:
tf.summary.scalar('ssim_loss', self.ssim_loss)
if self.icp_weight > 0:
tf.summary.scalar('icp_transform_loss', self.icp_transform_loss)
tf.summary.scalar('icp_residual_loss', self.icp_residual_loss)
for i in range(self.seq_length - 1):
tf.summary.histogram('tx%d' % i, self.egomotion[:, i, 0])
tf.summary.histogram('ty%d' % i, self.egomotion[:, i, 1])
tf.summary.histogram('tz%d' % i, self.egomotion[:, i, 2])
tf.summary.histogram('rx%d' % i, self.egomotion[:, i, 3])
tf.summary.histogram('ry%d' % i, self.egomotion[:, i, 4])
tf.summary.histogram('rz%d' % i, self.egomotion[:, i, 5])
for s in range(NUM_SCALES):
for i in range(self.seq_length):
tf.summary.image('scale%d_image%d' % (s, i),
self.images[s][:, :, :, 3 * i:3 * (i + 1)])
if i in self.depth:
tf.summary.histogram('scale%d_depth%d' % (s, i), self.depth[i][s])
tf.summary.histogram('scale%d_disp%d' % (s, i), self.disp[i][s])
tf.summary.image('scale%d_disparity%d' % (s, i), self.disp[i][s])
for key in self.warped_image[s]:
tf.summary.image('scale%d_warped_image%s' % (s, key),
self.warped_image[s][key])
tf.summary.image('scale%d_warp_mask%s' % (s, key),
self.warp_mask[s][key])
tf.summary.image('scale%d_warp_error%s' % (s, key),
self.warp_error[s][key])
if self.ssim_weight > 0:
tf.summary.image('scale%d_ssim_error%s' % (s, key),
self.ssim_error[s][key])
if self.icp_weight > 0:
tf.summary.image('scale%d_icp_residual%s' % (s, key),
self.icp_residual[s][key])
transform = self.icp_transform[s][key]
tf.summary.histogram('scale%d_icp_tx%s' % (s, key), transform[:, 0])
tf.summary.histogram('scale%d_icp_ty%s' % (s, key), transform[:, 1])
tf.summary.histogram('scale%d_icp_tz%s' % (s, key), transform[:, 2])
tf.summary.histogram('scale%d_icp_rx%s' % (s, key), transform[:, 3])
tf.summary.histogram('scale%d_icp_ry%s' % (s, key), transform[:, 4])
tf.summary.histogram('scale%d_icp_rz%s' % (s, key), transform[:, 5])
def build_depth_test_graph(self):
"""Builds depth model reading from placeholders."""
with tf.name_scope('depth_prediction'):
with tf.variable_scope('depth_prediction'):
input_uint8 = tf.placeholder(
tf.uint8, [self.batch_size, self.img_height, self.img_width, 3],
name='raw_input')
input_float = tf.image.convert_image_dtype(input_uint8, tf.float32)
# TODO(rezama): Retrain published model with batchnorm params and set
# is_training to False.
est_disp, _ = nets.disp_net(input_float, is_training=True)
est_depth = 1.0 / est_disp[0]
self.inputs_depth = input_uint8
self.est_depth = est_depth
def build_egomotion_test_graph(self):
"""Builds egomotion model reading from placeholders."""
input_uint8 = tf.placeholder(
tf.uint8,
[self.batch_size, self.img_height, self.img_width * self.seq_length, 3],
name='raw_input')
input_float = tf.image.convert_image_dtype(input_uint8, tf.float32)
image_seq = input_float
image_stack = self.unpack_image_batches(image_seq)
with tf.name_scope('egomotion_prediction'):
# TODO(rezama): Retrain published model with batchnorm params and set
# is_training to False.
egomotion, _ = nets.egomotion_net(image_stack, is_training=True,
legacy_mode=self.legacy_mode)
self.inputs_egomotion = input_uint8
self.est_egomotion = egomotion
def unpack_image_batches(self, image_seq):
"""[B, h, w * seq_length, 3] -> [B, h, w, 3 * seq_length]."""
with tf.name_scope('unpack_images'):
image_list = [
image_seq[:, :, i * self.img_width:(i + 1) * self.img_width, :]
for i in range(self.seq_length)
]
image_stack = tf.concat(image_list, axis=3)
image_stack.set_shape([
self.batch_size, self.img_height, self.img_width, self.seq_length * 3
])
return image_stack
def inference(self, inputs, sess, mode):
"""Runs depth or egomotion inference from placeholders."""
fetches = {}
if mode == 'depth':
fetches['depth'] = self.est_depth
inputs_ph = self.inputs_depth
if mode == 'egomotion':
fetches['egomotion'] = self.est_egomotion
inputs_ph = self.inputs_egomotion
results = sess.run(fetches, feed_dict={inputs_ph: inputs})
return results