forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
gym_wrapper.py
executable file
·116 lines (93 loc) · 3.44 KB
/
gym_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper around gym env.
Allows for using batches of possibly identitically seeded environments.
"""
import gym
import numpy as np
import random
from six.moves import xrange
import env_spec
def get_env(env_str):
return gym.make(env_str)
class GymWrapper(object):
def __init__(self, env_str, distinct=1, count=1, seeds=None):
self.distinct = distinct
self.count = count
self.total = self.distinct * self.count
self.seeds = seeds or [random.randint(0, 1e12)
for _ in xrange(self.distinct)]
self.envs = []
for seed in self.seeds:
for _ in xrange(self.count):
env = get_env(env_str)
env.seed(seed)
if hasattr(env, 'last'):
env.last = 100 # for algorithmic envs
self.envs.append(env)
self.dones = [True] * self.total
self.num_episodes_played = 0
one_env = self.get_one()
self.use_action_list = hasattr(one_env.action_space, 'spaces')
self.env_spec = env_spec.EnvSpec(self.get_one())
def get_seeds(self):
return self.seeds
def reset(self):
self.dones = [False] * self.total
self.num_episodes_played += len(self.envs)
# reset seeds to be synchronized
self.seeds = [random.randint(0, 1e12) for _ in xrange(self.distinct)]
counter = 0
for seed in self.seeds:
for _ in xrange(self.count):
self.envs[counter].seed(seed)
counter += 1
return [self.env_spec.convert_obs_to_list(env.reset())
for env in self.envs]
def reset_if(self, predicate=None):
if predicate is None:
predicate = self.dones
if self.count != 1:
assert np.all(predicate)
return self.reset()
self.num_episodes_played += sum(predicate)
output = [self.env_spec.convert_obs_to_list(env.reset())
if pred else None
for env, pred in zip(self.envs, predicate)]
for i, pred in enumerate(predicate):
if pred:
self.dones[i] = False
return output
def all_done(self):
return all(self.dones)
def step(self, actions):
def env_step(env, action):
action = self.env_spec.convert_action_to_gym(action)
obs, reward, done, tt = env.step(action)
obs = self.env_spec.convert_obs_to_list(obs)
return obs, reward, done, tt
actions = zip(*actions)
outputs = [env_step(env, action)
if not done else (self.env_spec.initial_obs(None), 0, True, None)
for action, env, done in zip(actions, self.envs, self.dones)]
for i, (_, _, done, _) in enumerate(outputs):
self.dones[i] = self.dones[i] or done
obs, reward, done, tt = zip(*outputs)
obs = [list(oo) for oo in zip(*obs)]
return [obs, reward, done, tt]
def get_one(self):
return random.choice(self.envs)
def __len__(self):
return len(self.envs)