forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
path_model.py
547 lines (436 loc) · 18.2 KB
/
path_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# Copyright 2017, 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""LexNET Path-based Model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import itertools
import os
import lexnet_common
import numpy as np
import tensorflow as tf
class PathBasedModel(object):
"""The LexNET path-based model for classifying semantic relations."""
@classmethod
def default_hparams(cls):
"""Returns the default hyper-parameters."""
return tf.contrib.training.HParams(
max_path_len=8,
num_classes=37,
num_epochs=30,
input_keep_prob=0.9,
learning_rate=0.001,
learn_lemmas=False,
random_seed=133, # zero means no random seed
lemma_embeddings_file='glove/glove.6B.50d.bin',
num_pos=len(lexnet_common.POSTAGS),
num_dep=len(lexnet_common.DEPLABELS),
num_directions=len(lexnet_common.DIRS),
lemma_dim=50,
pos_dim=4,
dep_dim=5,
dir_dim=1)
def __init__(self, hparams, lemma_embeddings, instance):
"""Initialize the LexNET classifier.
Args:
hparams: the hyper-parameters.
lemma_embeddings: word embeddings for the path-based component.
instance: string tensor containing the input instance
"""
self.hparams = hparams
self.lemma_embeddings = lemma_embeddings
self.instance = instance
self.vocab_size, self.lemma_dim = self.lemma_embeddings.shape
# Set the random seed
if hparams.random_seed > 0:
tf.set_random_seed(hparams.random_seed)
# Create the network
self.__create_computation_graph__()
def __create_computation_graph__(self):
"""Initialize the model and define the graph."""
self.lstm_input_dim = sum([self.hparams.lemma_dim, self.hparams.pos_dim,
self.hparams.dep_dim, self.hparams.dir_dim])
self.lstm_output_dim = self.lstm_input_dim
network_input = self.lstm_output_dim
self.lemma_lookup = tf.get_variable(
'lemma_lookup',
initializer=self.lemma_embeddings,
dtype=tf.float32,
trainable=self.hparams.learn_lemmas)
self.pos_lookup = tf.get_variable(
'pos_lookup',
shape=[self.hparams.num_pos, self.hparams.pos_dim],
dtype=tf.float32)
self.dep_lookup = tf.get_variable(
'dep_lookup',
shape=[self.hparams.num_dep, self.hparams.dep_dim],
dtype=tf.float32)
self.dir_lookup = tf.get_variable(
'dir_lookup',
shape=[self.hparams.num_directions, self.hparams.dir_dim],
dtype=tf.float32)
self.weights1 = tf.get_variable(
'W1',
shape=[network_input, self.hparams.num_classes],
dtype=tf.float32)
self.bias1 = tf.get_variable(
'b1',
shape=[self.hparams.num_classes],
dtype=tf.float32)
# Define the variables
(self.batch_paths,
self.path_counts,
self.seq_lengths,
self.path_strings,
self.batch_labels) = _parse_tensorflow_example(
self.instance, self.hparams.max_path_len, self.hparams.input_keep_prob)
# Create the LSTM
self.__lstm__()
# Create the MLP
self.__mlp__()
self.instances_to_load = tf.placeholder(dtype=tf.string, shape=[None])
self.labels_to_load = lexnet_common.load_all_labels(self.instances_to_load)
def load_labels(self, session, batch_instances):
"""Loads the labels of the current instances.
Args:
session: the current TensorFlow session.
batch_instances: the dataset instances.
Returns:
the labels.
"""
return session.run(self.labels_to_load,
feed_dict={self.instances_to_load: batch_instances})
def run_one_epoch(self, session, num_steps):
"""Train the model.
Args:
session: The current TensorFlow session.
num_steps: The number of steps in each epoch.
Returns:
The mean loss for the epoch.
Raises:
ArithmeticError: if the loss becomes non-finite.
"""
losses = []
for step in range(num_steps):
curr_loss, _ = session.run([self.cost, self.train_op])
if not np.isfinite(curr_loss):
raise ArithmeticError('nan loss at step %d' % step)
losses.append(curr_loss)
return np.mean(losses)
def predict(self, session, inputs):
"""Predict the classification of the test set.
Args:
session: The current TensorFlow session.
inputs: the train paths, x, y and/or nc vectors
Returns:
The test predictions.
"""
predictions, _ = zip(*self.predict_with_score(session, inputs))
return np.array(predictions)
def predict_with_score(self, session, inputs):
"""Predict the classification of the test set.
Args:
session: The current TensorFlow session.
inputs: the test paths, x, y and/or nc vectors
Returns:
The test predictions along with their scores.
"""
test_pred = [0] * len(inputs)
for index, instance in enumerate(inputs):
prediction, scores = session.run(
[self.predictions, self.scores],
feed_dict={self.instance: instance})
test_pred[index] = (prediction, scores[prediction])
return test_pred
def __mlp__(self):
"""Performs the MLP operations.
Returns: the prediction object to be computed in a Session
"""
# Feed the paths to the MLP: path_embeddings is
# [num_batch_paths, output_dim], and when we multiply it by W
# ([output_dim, num_classes]), we get a matrix of class distributions:
# [num_batch_paths, num_classes].
self.distributions = tf.matmul(self.path_embeddings, self.weights1)
# Now, compute weighted average on the class distributions, using the path
# frequency as weights.
# First, reshape path_freq to the same shape of distributions
self.path_freq = tf.tile(tf.expand_dims(self.path_counts, -1),
[1, self.hparams.num_classes])
# Second, multiply the distributions and frequencies element-wise.
self.weighted = tf.multiply(self.path_freq, self.distributions)
# Finally, take the average to get a tensor of shape [1, num_classes].
self.weighted_sum = tf.reduce_sum(self.weighted, 0)
self.num_paths = tf.clip_by_value(tf.reduce_sum(self.path_counts),
1, np.inf)
self.num_paths = tf.tile(tf.expand_dims(self.num_paths, -1),
[self.hparams.num_classes])
self.scores = tf.div(self.weighted_sum, self.num_paths)
self.predictions = tf.argmax(self.scores)
# Define the loss function and the optimization algorithm
self.cross_entropies = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.scores, labels=tf.reduce_mean(self.batch_labels))
self.cost = tf.reduce_sum(self.cross_entropies, name='cost')
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer()
self.train_op = self.optimizer.minimize(self.cost,
global_step=self.global_step)
def __lstm__(self):
"""Defines the LSTM operations.
Returns:
A matrix of path embeddings.
"""
lookup_tables = [self.lemma_lookup, self.pos_lookup,
self.dep_lookup, self.dir_lookup]
# Split the edges to components: list of 4 tensors
# [num_batch_paths, max_path_len, 1]
self.edge_components = tf.split(self.batch_paths, 4, axis=2)
# Look up the components embeddings and concatenate them back together
self.path_matrix = tf.concat([
tf.squeeze(tf.nn.embedding_lookup(lookup_table, component), 2)
for lookup_table, component in
zip(lookup_tables, self.edge_components)
], axis=2)
self.sequence_lengths = tf.reshape(self.seq_lengths, [-1])
# Define the LSTM.
# The input is [num_batch_paths, max_path_len, input_dim].
lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.lstm_output_dim)
# The output is [num_batch_paths, max_path_len, output_dim].
self.lstm_outputs, _ = tf.nn.dynamic_rnn(
lstm_cell, self.path_matrix, dtype=tf.float32,
sequence_length=self.sequence_lengths)
# Slice the last *relevant* output for each instance ->
# [num_batch_paths, output_dim]
self.path_embeddings = _extract_last_relevant(self.lstm_outputs,
self.sequence_lengths)
def _parse_tensorflow_example(record, max_path_len, input_keep_prob):
"""Reads TensorFlow examples from a RecordReader.
Args:
record: a record with TensorFlow example.
max_path_len: the maximum path length.
input_keep_prob: 1 - the word dropout probability
Returns:
The paths and counts
"""
features = tf.parse_single_example(record, {
'lemmas':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'postags':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'deplabels':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'dirs':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'counts':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'pathlens':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'reprs':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.string, allow_missing=True),
'rel_id':
tf.FixedLenFeature([], dtype=tf.int64)
})
path_counts = tf.to_float(features['counts'])
seq_lengths = features['pathlens']
# Concatenate the edge components to create a path tensor:
# [max_paths_per_ins, max_path_length, 4]
lemmas = _word_dropout(
tf.reshape(features['lemmas'], [-1, max_path_len]), input_keep_prob)
paths = tf.stack(
[lemmas] + [
tf.reshape(features[f], [-1, max_path_len])
for f in ('postags', 'deplabels', 'dirs')
],
axis=-1)
path_strings = features['reprs']
# Add an empty path to pairs with no paths
paths = tf.cond(
tf.shape(paths)[0] > 0,
lambda: paths,
lambda: tf.zeros([1, max_path_len, 4], dtype=tf.int64))
# Paths are left-padded. We reverse them to make them right-padded.
#paths = tf.reverse(paths, axis=[1])
path_counts = tf.cond(
tf.shape(path_counts)[0] > 0,
lambda: path_counts,
lambda: tf.constant([1.0], dtype=tf.float32))
seq_lengths = tf.cond(
tf.shape(seq_lengths)[0] > 0,
lambda: seq_lengths,
lambda: tf.constant([1], dtype=tf.int64))
# Duplicate the label for each path
labels = tf.ones_like(path_counts, dtype=tf.int64) * features['rel_id']
return paths, path_counts, seq_lengths, path_strings, labels
def _extract_last_relevant(output, seq_lengths):
"""Get the last relevant LSTM output cell for each batch instance.
Args:
output: the LSTM outputs - a tensor with shape
[num_paths, output_dim, max_path_len]
seq_lengths: the sequences length per instance
Returns:
The last relevant LSTM output cell for each batch instance.
"""
max_length = int(output.get_shape()[1])
path_lengths = tf.clip_by_value(seq_lengths - 1, 0, max_length)
relevant = tf.reduce_sum(tf.multiply(output, tf.expand_dims(
tf.one_hot(path_lengths, max_length), -1)), 1)
return relevant
def _word_dropout(words, input_keep_prob):
"""Drops words with probability 1 - input_keep_prob.
Args:
words: a list of lemmas from the paths.
input_keep_prob: the probability to keep the word.
Returns:
The revised list where some of the words are <UNK>ed.
"""
# Create the mask: (-1) to drop, 1 to keep
prob = tf.random_uniform(tf.shape(words), 0, 1)
condition = tf.less(prob, (1 - input_keep_prob))
mask = tf.where(condition,
tf.negative(tf.ones_like(words)), tf.ones_like(words))
# We need to keep zeros (<PAD>), and change other numbers to 1 (<UNK>)
# if their mask is -1. First, we multiply the mask and the words.
# Zeros will stay zeros, and words to drop will become negative.
# Then, we change negative values to 1.
masked_words = tf.multiply(mask, words)
condition = tf.less(masked_words, 0)
dropped_words = tf.where(condition, tf.ones_like(words), words)
return dropped_words
def compute_path_embeddings(model, session, instances):
"""Compute the path embeddings for all the distinct paths.
Args:
model: The trained path-based model.
session: The current TensorFlow session.
instances: All the train, test and validation instances.
Returns:
The path to ID index and the path embeddings.
"""
# Get an index for each distinct path
path_index = collections.defaultdict(itertools.count(0).next)
path_vectors = {}
for instance in instances:
curr_path_embeddings, curr_path_strings = session.run(
[model.path_embeddings, model.path_strings],
feed_dict={model.instance: instance})
for i, path in enumerate(curr_path_strings):
if not path:
continue
# Set a new/existing index for the path
index = path_index[path]
# Save its vector
path_vectors[index] = curr_path_embeddings[i, :]
print('Number of distinct paths: %d' % len(path_index))
return path_index, path_vectors
def save_path_embeddings(model, path_vectors, path_index, embeddings_base_path):
"""Saves the path embeddings.
Args:
model: The trained path-based model.
path_vectors: The path embeddings.
path_index: A map from path to ID.
embeddings_base_path: The base directory where the embeddings are.
"""
index_range = range(max(path_index.values()) + 1)
path_matrix = [path_vectors[i] for i in index_range]
path_matrix = np.vstack(path_matrix)
# Save the path embeddings
path_vector_filename = os.path.join(
embeddings_base_path, '%d_path_vectors' % model.lstm_output_dim)
with open(path_vector_filename, 'w') as f_out:
np.save(f_out, path_matrix)
index_to_path = {i: p for p, i in path_index.iteritems()}
path_vocab = [index_to_path[i] for i in index_range]
# Save the path vocabulary
path_vocab_filename = os.path.join(
embeddings_base_path, '%d_path_vocab' % model.lstm_output_dim)
with open(path_vocab_filename, 'w') as f_out:
f_out.write('\n'.join(path_vocab))
f_out.write('\n')
print('Saved path embeddings.')
def load_path_embeddings(path_embeddings_dir, path_dim):
"""Loads pretrained path embeddings from a binary file and returns the matrix.
Args:
path_embeddings_dir: The directory for the path embeddings.
path_dim: The dimension of the path embeddings, used as prefix to the
path_vocab and path_vectors files.
Returns:
The path embeddings matrix and the path_to_index dictionary.
"""
prefix = path_embeddings_dir + '/%d' % path_dim + '_'
with open(prefix + 'path_vocab') as f_in:
vocab = f_in.read().splitlines()
vocab_size = len(vocab)
embedding_file = prefix + 'path_vectors'
print('Embedding file "%s" has %d paths' % (embedding_file, vocab_size))
with open(embedding_file) as f_in:
embeddings = np.load(f_in)
path_to_index = {p: i for i, p in enumerate(vocab)}
return embeddings, path_to_index
def get_indicative_paths(model, session, path_index, path_vectors, classes,
save_dir, k=20, threshold=0.8):
"""Gets the most indicative paths for each class.
Args:
model: The trained path-based model.
session: The current TensorFlow session.
path_index: A map from path to ID.
path_vectors: The path embeddings.
classes: The class label names.
save_dir: Where to save the paths.
k: The k for top-k paths.
threshold: The threshold above which to consider paths as indicative.
"""
# Define graph variables for this operation
p_path_embedding = tf.placeholder(dtype=tf.float32,
shape=[1, model.lstm_output_dim])
p_distributions = tf.nn.softmax(tf.matmul(p_path_embedding, model.weights1))
# Treat each path as a pair instance with a single path, and get the
# relation distribution for it. Then, take the top paths for each relation.
# This dictionary contains a relation as a key, and the value is a list of
# tuples of path index and score. A relation r will contain (p, s) if the
# path p is classified to r with a confidence of s.
prediction_per_relation = collections.defaultdict(list)
index_to_path = {i: p for p, i in path_index.iteritems()}
# Predict all the paths
for index in range(len(path_index)):
curr_path_vector = path_vectors[index]
distribution = session.run(p_distributions,
feed_dict={
p_path_embedding: np.reshape(
curr_path_vector,
[1, model.lstm_output_dim])})
distribution = distribution[0, :]
prediction = np.argmax(distribution)
prediction_per_relation[prediction].append(
(index, distribution[prediction]))
if index % 10000 == 0:
print('Classified %d/%d (%3.2f%%) of the paths' % (
index, len(path_index), 100 * index / len(path_index)))
# Retrieve k-best scoring paths for each relation
for relation_index, relation in enumerate(classes):
curr_paths = sorted(prediction_per_relation[relation_index],
key=lambda item: item[1], reverse=True)
above_t = [(p, s) for (p, s) in curr_paths if s >= threshold]
top_k = curr_paths[k+1]
relation_paths = above_t if len(above_t) > len(top_k) else top_k
paths_filename = os.path.join(save_dir, '%s.paths' % relation)
with open(paths_filename, 'w') as f_out:
for index, score in relation_paths:
print('\t'.join([index_to_path[index], str(score)]), file=f_out)