forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
287 lines (231 loc) · 9.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import tensorflow as tf
import sonnet as snt
import itertools
import functools
from tensorflow.core.framework import node_def_pb2
from tensorflow.python.framework import device as pydev
from tensorflow.python.framework import errors
from tensorflow.python.ops import variable_scope as variable_scope_ops
from sonnet.python.modules import util as snt_util
from tensorflow.python.util import nest
def eqzip(*args):
"""Zip but raises error if lengths don't match.
Args:
*args: list of lists or tuples
Returns:
list: the result of zip
Raises:
ValueError: when the lengths don't match
"""
sizes = [len(x) for x in args]
if not all([sizes[0] == x for x in sizes]):
raise ValueError("Lists are of different sizes. \n %s"%str(sizes))
return zip(*args)
@contextlib.contextmanager
def assert_no_new_variables():
"""Ensure that no tf.Variables are constructed inside the context.
Yields:
None
Raises:
ValueError: if there is a variable created.
"""
num_vars = len(tf.global_variables())
old_variables = tf.global_variables()
yield
if len(tf.global_variables()) != num_vars:
new_vars = set(tf.global_variables()) - set(old_variables)
tf.logging.error("NEW VARIABLES CREATED")
tf.logging.error(10*"=")
for v in new_vars:
tf.logging.error(v)
raise ValueError("Variables created inside an "
"assert_no_new_variables context")
if old_variables != tf.global_variables():
raise ValueError("Variables somehow changed inside an "
"assert_no_new_variables context."
"This means something modified the tf.global_variables()")
def get_variables_in_modules(module_list):
var_list = []
for m in module_list:
var_list.extend(snt.get_variables_in_module(m))
return var_list
def state_barrier_context(state):
"""Return a context manager that prevents interior ops from running
unless the whole state has been computed.
This is to prevent assign race conditions.
"""
tensors = [x for x in nest.flatten(state) if type(x) == tf.Tensor]
tarray = [x.flow for x in nest.flatten(state) if hasattr(x, "flow")]
return tf.control_dependencies(tensors + tarray)
def _identity_fn(tf_entity):
if hasattr(tf_entity, "identity"):
return tf_entity.identity()
else:
return tf.identity(tf_entity)
def state_barrier_result(state):
"""Return the same state, but with a control dependency to prevent it from
being partially computed
"""
with state_barrier_context(state):
return nest.map_structure(_identity_fn, state)
def train_iterator(num_iterations):
"""Iterator that returns an index of the current step.
This iterator runs forever if num_iterations is None
otherwise it runs for some fixed amount of steps.
"""
if num_iterations is None:
return itertools.count()
else:
return xrange(num_iterations)
def print_op(op, msg):
"""Print a string and return an op wrapped in a control dependency to make
sure it ran."""
print_op = tf.Print(tf.constant(0), [tf.constant(0)], msg)
return tf.group(op, print_op)
class MultiQueueRunner(tf.train.QueueRunner):
"""A QueueRunner with multiple queues """
def __init__(self, queues, enqueue_ops):
close_op = tf.group(* [q.close() for q in queues])
cancel_op = tf.group(
* [q.close(cancel_pending_enqueues=True) for q in queues])
queue_closed_exception_types = (errors.OutOfRangeError,)
enqueue_op = tf.group(*enqueue_ops, name="multi_enqueue")
super(MultiQueueRunner, self).__init__(
queues[0],
enqueue_ops=[enqueue_op],
close_op=close_op,
cancel_op=cancel_op,
queue_closed_exception_types=queue_closed_exception_types)
# This function is not elegant, but I tried so many other ways to get this to
# work and this is the only one that ended up not incuring significant overhead
# or obscure tensorflow bugs.
def sample_n_per_class(dataset, samples_per_class):
"""Create a new callable / dataset object that returns batches of each with
samples_per_class per label.
Args:
dataset: fn
samples_per_class: int
Returns:
function, [] -> batch where batch is the same type as the return of
dataset().
"""
with tf.control_dependencies(None), tf.name_scope(None):
with tf.name_scope("queue_runner/sample_n_per_class"):
batch = dataset()
num_classes = batch.label_onehot.shape.as_list()[1]
batch_size = num_classes * samples_per_class
flatten = nest.flatten(batch)
queues = []
enqueue_ops = []
capacity = samples_per_class * 20
for i in xrange(num_classes):
queue = tf.FIFOQueue(
capacity=capacity,
shapes=[f.shape.as_list()[1:] for f in flatten],
dtypes=[f.dtype for f in flatten])
queues.append(queue)
idx = tf.where(tf.equal(batch.label, i))
sub_batch = []
to_enqueue = []
for elem in batch:
new_e = tf.gather(elem, idx)
new_e = tf.squeeze(new_e, 1)
to_enqueue.append(new_e)
remaining = (capacity - queue.size())
to_add = tf.minimum(tf.shape(idx)[0], remaining)
def _enqueue():
return queue.enqueue_many([t[:to_add] for t in to_enqueue])
enqueue_op = tf.cond(
tf.equal(to_add, 0), tf.no_op, _enqueue)
enqueue_ops.append(enqueue_op)
# This has caused many deadlocks / issues. This is some logging to at least
# shed light to what is going on.
print_lam = lambda: tf.Print(tf.constant(0.0), [q.size() for q in queues], "MultiQueueRunner queues status. Has capacity %d"%capacity)
some_percent_of_time = tf.less(tf.random_uniform([]), 0.0005)
maybe_print = tf.cond(some_percent_of_time, print_lam, lambda: tf.constant(0.0))
with tf.control_dependencies([maybe_print]):
enqueue_ops = [tf.group(e) for e in enqueue_ops]
qr = MultiQueueRunner(queues=queues, enqueue_ops=enqueue_ops)
tf.train.add_queue_runner(qr)
def dequeue_batch():
with tf.name_scope("sample_n_per_batch/dequeue/"):
entries = []
for q in queues:
entries.append(q.dequeue_many(samples_per_class))
flat_batch = [tf.concat(x, 0) for x in zip(*entries)]
idx = tf.random_shuffle(tf.range(batch_size))
flat_batch = [tf.gather(f, idx, axis=0) for f in flat_batch]
return nest.pack_sequence_as(batch, flat_batch)
return dequeue_batch
def structure_map_multi(func, values):
all_values = [nest.flatten(v) for v in values]
rets = []
for pair in zip(*all_values):
rets.append(func(pair))
return nest.pack_sequence_as(values[0], rets)
def structure_map_split(func, value):
vv = nest.flatten(value)
rets = []
for v in vv:
rets.append(func(v))
return [nest.pack_sequence_as(value, r) for r in zip(*rets)]
def assign_variables(targets, values):
return tf.group(*[t.assign(v) for t,v in eqzip(targets, values)],
name="assign_variables")
def create_variables_in_class_scope(method):
"""Force the variables constructed in this class to live in the sonnet module.
Wraps a method on a sonnet module.
For example the following will create two different variables.
```
class Mod(snt.AbstractModule):
@create_variables_in_class_scope
def dynamic_thing(self, input, name):
return snt.Linear(name)(input)
mod.dynamic_thing(x, name="module_nameA")
mod.dynamic_thing(x, name="module_nameB")
# reuse
mod.dynamic_thing(y, name="module_nameA")
```
"""
@functools.wraps(method)
def wrapper(obj, *args, **kwargs):
def default_context_manager(reuse=None):
variable_scope = obj.variable_scope
return tf.variable_scope(variable_scope, reuse=reuse)
variable_scope_context_manager = getattr(obj, "_enter_variable_scope",
default_context_manager)
graph = tf.get_default_graph()
# Temporarily enter the variable scope to capture it
with variable_scope_context_manager() as tmp_variable_scope:
variable_scope = tmp_variable_scope
with variable_scope_ops._pure_variable_scope(
variable_scope, reuse=tf.AUTO_REUSE) as pure_variable_scope:
name_scope = variable_scope.original_name_scope
if name_scope[-1] != "/":
name_scope += "/"
with tf.name_scope(name_scope):
sub_scope = snt_util.to_snake_case(method.__name__)
with tf.name_scope(sub_scope) as scope:
out_ops = method(obj, *args, **kwargs)
return out_ops
return wrapper