forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
288 lines (231 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Program which train models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import tensorflow as tf
import adversarial_attack
import model_lib
from datasets import dataset_factory
FLAGS = flags.FLAGS
flags.DEFINE_integer('max_steps', -1, 'Number of steps to stop at.')
flags.DEFINE_string('output_dir', None,
'Training directory where checkpoints will be saved.')
flags.DEFINE_integer('ps_tasks', 0, 'Number of parameter servers.')
flags.DEFINE_integer('task', 0, 'Task ID for running distributed training.')
flags.DEFINE_string('master', '', 'Tensorflow master.')
flags.DEFINE_string('model_name', 'resnet_v2_50', 'Name of the model.')
flags.DEFINE_string('dataset', 'imagenet',
'Dataset: "tiny_imagenet" or "imagenet".')
flags.DEFINE_integer('dataset_image_size', 64,
'Size of the images in the dataset.')
flags.DEFINE_integer('num_summary_images', 3,
'Number of images to display in Tensorboard.')
flags.DEFINE_integer(
'save_summaries_steps', 100,
'The frequency with which summaries are saved, in steps.')
flags.DEFINE_integer(
'save_summaries_secs', None,
'The frequency with which summaries are saved, in seconds.')
flags.DEFINE_integer(
'save_model_steps', 500,
'The frequency with which the model is saved, in steps.')
flags.DEFINE_string('hparams', '', 'Hyper parameters.')
flags.DEFINE_integer('replicas_to_aggregate', 1,
'Number of gradients to collect before param updates.')
flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')
flags.DEFINE_float('moving_average_decay', 0.9999,
'The decay to use for the moving average.')
# Flags to control fine tuning
flags.DEFINE_string('finetune_checkpoint_path', None,
'Path to checkpoint for fine tuning. '
'If None then no fine tuning is done.')
flags.DEFINE_string('finetune_exclude_pretrained_scopes', '',
'Variable scopes to exclude when loading checkpoint for '
'fine tuning.')
flags.DEFINE_string('finetune_trainable_scopes', None,
'If set then it defines list of variable scopes for '
'trainable variables.')
def _get_finetuning_init_fn(variable_averages):
"""Returns an init functions, used for fine tuning."""
if not FLAGS.finetune_checkpoint_path:
return None
if tf.train.latest_checkpoint(FLAGS.output_dir):
return None
if tf.gfile.IsDirectory(FLAGS.finetune_checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.finetune_checkpoint_path)
else:
checkpoint_path = FLAGS.finetune_checkpoint_path
if not checkpoint_path:
tf.logging.warning('Not doing fine tuning, can not find checkpoint in %s',
FLAGS.finetune_checkpoint_path)
return None
tf.logging.info('Fine-tuning from %s', checkpoint_path)
if FLAGS.finetune_exclude_pretrained_scopes:
exclusions = {
scope.strip()
for scope in FLAGS.finetune_exclude_pretrained_scopes.split(',')
}
else:
exclusions = set()
filtered_model_variables = [
v for v in tf.contrib.framework.get_model_variables()
if not any([v.op.name.startswith(e) for e in exclusions])
]
if variable_averages:
variables_to_restore = {}
for v in filtered_model_variables:
# variables_to_restore[variable_averages.average_name(v)] = v
if v in tf.trainable_variables():
variables_to_restore[variable_averages.average_name(v)] = v
else:
variables_to_restore[v.op.name] = v
else:
variables_to_restore = {v.op.name: v for v in filtered_model_variables}
assign_fn = tf.contrib.framework.assign_from_checkpoint_fn(
checkpoint_path,
variables_to_restore)
if assign_fn:
return lambda _, sess: assign_fn(sess)
else:
return None
def main(_):
assert FLAGS.output_dir, '--output_dir has to be provided'
if not tf.gfile.Exists(FLAGS.output_dir):
tf.gfile.MakeDirs(FLAGS.output_dir)
params = model_lib.default_hparams()
params.parse(FLAGS.hparams)
tf.logging.info('User provided hparams: %s', FLAGS.hparams)
tf.logging.info('All hyper parameters: %s', params)
batch_size = params.batch_size
graph = tf.Graph()
with graph.as_default():
with tf.device(tf.train.replica_device_setter(ps_tasks=FLAGS.ps_tasks)):
# dataset
dataset, examples_per_epoch, num_classes, bounds = (
dataset_factory.get_dataset(
FLAGS.dataset,
'train',
batch_size,
FLAGS.dataset_image_size,
is_training=True))
dataset_iterator = dataset.make_one_shot_iterator()
images, labels = dataset_iterator.get_next()
one_hot_labels = tf.one_hot(labels, num_classes)
# set up model
global_step = tf.train.get_or_create_global_step()
model_fn = model_lib.get_model(FLAGS.model_name, num_classes)
if params.train_adv_method == 'clean':
logits = model_fn(images, is_training=True)
adv_examples = None
else:
model_fn_eval_mode = lambda x: model_fn(x, is_training=False)
adv_examples = adversarial_attack.generate_adversarial_examples(
images, bounds, model_fn_eval_mode, params.train_adv_method)
all_examples = tf.concat([images, adv_examples], axis=0)
logits = model_fn(all_examples, is_training=True)
one_hot_labels = tf.concat([one_hot_labels, one_hot_labels], axis=0)
# update trainable variables if fine tuning is used
model_lib.filter_trainable_variables(
FLAGS.finetune_trainable_scopes)
# set up losses
total_loss = tf.losses.softmax_cross_entropy(
onehot_labels=one_hot_labels,
logits=logits,
label_smoothing=params.label_smoothing)
tf.summary.scalar('loss_xent', total_loss)
if params.train_lp_weight > 0:
images1, images2 = tf.split(logits, 2)
loss_lp = tf.losses.mean_squared_error(
images1, images2, weights=params.train_lp_weight)
tf.summary.scalar('loss_lp', loss_lp)
total_loss += loss_lp
if params.weight_decay > 0:
loss_wd = (
params.weight_decay
* tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
)
tf.summary.scalar('loss_wd', loss_wd)
total_loss += loss_wd
# Setup the moving averages:
if FLAGS.moving_average_decay and (FLAGS.moving_average_decay > 0):
with tf.name_scope('moving_average'):
moving_average_variables = tf.contrib.framework.get_model_variables()
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
else:
moving_average_variables = None
variable_averages = None
# set up optimizer and training op
learning_rate, steps_per_epoch = model_lib.get_lr_schedule(
params, examples_per_epoch, FLAGS.replicas_to_aggregate)
optimizer = model_lib.get_optimizer(params, learning_rate)
optimizer = tf.train.SyncReplicasOptimizer(
opt=optimizer,
replicas_to_aggregate=FLAGS.replicas_to_aggregate,
total_num_replicas=FLAGS.worker_replicas,
variable_averages=variable_averages,
variables_to_average=moving_average_variables)
train_op = tf.contrib.training.create_train_op(
total_loss, optimizer,
update_ops=tf.get_collection(tf.GraphKeys.UPDATE_OPS))
tf.summary.image('images', images[0:FLAGS.num_summary_images])
if adv_examples is not None:
tf.summary.image('adv_images', adv_examples[0:FLAGS.num_summary_images])
tf.summary.scalar('total_loss', total_loss)
tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('current_epoch',
tf.to_double(global_step) / steps_per_epoch)
# Training
is_chief = FLAGS.task == 0
scaffold = tf.train.Scaffold(
init_fn=_get_finetuning_init_fn(variable_averages))
hooks = [
tf.train.LoggingTensorHook({'total_loss': total_loss,
'global_step': global_step},
every_n_iter=1),
tf.train.NanTensorHook(total_loss),
]
chief_only_hooks = [
tf.train.SummarySaverHook(save_steps=FLAGS.save_summaries_steps,
save_secs=FLAGS.save_summaries_secs,
output_dir=FLAGS.output_dir,
scaffold=scaffold),
tf.train.CheckpointSaverHook(FLAGS.output_dir,
save_steps=FLAGS.save_model_steps,
scaffold=scaffold),
]
if FLAGS.max_steps > 0:
hooks.append(
tf.train.StopAtStepHook(last_step=FLAGS.max_steps))
# hook for sync replica training
hooks.append(optimizer.make_session_run_hook(is_chief))
with tf.train.MonitoredTrainingSession(
master=FLAGS.master,
is_chief=is_chief,
checkpoint_dir=FLAGS.output_dir,
scaffold=scaffold,
hooks=hooks,
chief_only_hooks=chief_only_hooks,
save_checkpoint_secs=None,
save_summaries_steps=None,
save_summaries_secs=None) as session:
while not session.should_stop():
session.run([train_op])
if __name__ == '__main__':
app.run(main)