forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
xlnet_config.py
181 lines (151 loc) · 5.97 KB
/
xlnet_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility functions used in XLNet model."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import json
import os
import tensorflow as tf
def create_run_config(is_training, is_finetune, flags):
"""Helper function for creating RunConfig."""
kwargs = dict(
is_training=is_training,
use_tpu=flags.use_tpu,
dropout=flags.dropout,
dropout_att=flags.dropout_att,
init_method=flags.init_method,
init_range=flags.init_range,
init_std=flags.init_std,
clamp_len=flags.clamp_len)
if not is_finetune:
kwargs.update(dict(
mem_len=flags.mem_len,
reuse_len=flags.reuse_len,
bi_data=flags.bi_data,
clamp_len=flags.clamp_len,
same_length=flags.same_length))
return RunConfig(**kwargs)
# TODO(hongkuny): refactor XLNetConfig and RunConfig.
class XLNetConfig(object):
"""Configs for XLNet model.
XLNetConfig contains hyperparameters that are specific to a model checkpoint;
i.e., these hyperparameters should be the same between
pretraining and finetuning.
The following hyperparameters are defined:
n_layer: int, the number of layers.
d_model: int, the hidden size.
n_head: int, the number of attention heads.
d_head: int, the dimension size of each attention head.
d_inner: int, the hidden size in feed-forward layers.
ff_activation: str, "relu" or "gelu".
untie_r: bool, whether to untie the biases in attention.
n_token: int, the vocab size.
"""
def __init__(self, FLAGS=None, json_path=None, args_dict=None):
"""Constructing an XLNetConfig.
One of FLAGS or json_path should be provided.
Args:
FLAGS: An FLAGS instance.
json_path: A path to a json config file.
args_dict: A dict for args.
"""
assert FLAGS is not None or json_path is not None or args_dict is not None
self.keys = ['n_layer', 'd_model', 'n_head', 'd_head', 'd_inner',
'ff_activation', 'untie_r', 'n_token']
if FLAGS is not None:
self.init_from_flags(FLAGS)
if json_path is not None:
self.init_from_json(json_path)
if args_dict is not None:
self.init_from_dict(args_dict)
def init_from_dict(self, args_dict):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
for key in self.keys:
setattr(self, key, args_dict[key])
def init_from_flags(self, flags):
for key in self.keys:
setattr(self, key, getattr(flags, key))
def init_from_json(self, json_path):
with tf.io.gfile.GFile(json_path) as f:
json_data = json.load(f)
self.init_from_dict(json_data)
def to_json(self, json_path):
"""Save XLNetConfig to a json file."""
json_data = {}
for key in self.keys:
json_data[key] = getattr(self, key)
json_dir = os.path.dirname(json_path)
if not tf.io.gfile.exists(json_dir):
tf.io.gfile.makedirs(json_dir)
with tf.io.gfile.GFile(json_path, 'w') as f:
json.dump(json_data, f, indent=4, sort_keys=True)
class RunConfig(object):
"""Class of RunConfig.
RunConfig contains hyperparameters that could be different
between pretraining and finetuning.
These hyperparameters can also be changed from run to run.
We store them separately from XLNetConfig for flexibility.
"""
def __init__(self,
is_training,
use_tpu,
dropout,
dropout_att,
init_method='normal',
init_range=0.1,
init_std=0.02,
mem_len=None,
reuse_len=None,
bi_data=False,
clamp_len=-1,
same_length=False,
use_cls_mask=True):
"""Initializes RunConfig.
Args:
is_training: bool, whether in training mode.
use_tpu: bool, whether TPUs are used.
dropout: float, dropout rate.
dropout_att: float, dropout rate on attention probabilities.
init_method: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
init_std: float, initialize the parameters with a normal distribution
with mean 0 and stddev init_std. Only effective when init="normal".
mem_len: int, the number of tokens to cache.
reuse_len: int, the number of tokens in the currect batch to be cached
and reused in the future.
bi_data: bool, whether to use bidirectional input pipeline.
Usually set to True during pretraining and False during finetuning.
clamp_len: int, clamp all relative distances larger than clamp_len.
-1 means no clamping.
same_length: bool, whether to use the same attention length
for each token.
use_cls_mask: bool, whether to introduce cls mask.
"""
self.init_method = init_method
self.init_range = init_range
self.init_std = init_std
self.is_training = is_training
self.dropout = dropout
self.dropout_att = dropout_att
self.use_tpu = use_tpu
self.mem_len = mem_len
self.reuse_len = reuse_len
self.bi_data = bi_data
self.clamp_len = clamp_len
self.same_length = same_length
self.use_cls_mask = use_cls_mask