forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
metrics.py
183 lines (149 loc) · 7.03 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for calculating loss, accuracy, and other model metrics.
Metrics:
- Padded loss, accuracy, and negative log perplexity. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/metrics.py
- BLEU approximation. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
- ROUGE score. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/rouge.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf
def _pad_tensors_to_same_length(x, y):
"""Pad x and y so that the results have the same length (second dimension)."""
with tf.name_scope("pad_to_same_length"):
x_length = tf.shape(x)[1]
y_length = tf.shape(y)[1]
max_length = tf.maximum(x_length, y_length)
x = tf.pad(x, [[0, 0], [0, max_length - x_length], [0, 0]])
y = tf.pad(y, [[0, 0], [0, max_length - y_length]])
return x, y
def padded_cross_entropy_loss(logits, labels, smoothing, vocab_size):
"""Calculate cross entropy loss while ignoring padding.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
Returns the cross entropy loss and weight tensors: float32 tensors with
shape [batch_size, max(length_logits, length_labels)]
"""
with tf.name_scope("loss"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
# Calculate smoothing cross entropy
with tf.name_scope("smoothing_cross_entropy"):
confidence = 1.0 - smoothing
low_confidence = (1.0 - confidence) / tf.cast(vocab_size - 1, tf.float32)
soft_targets = tf.one_hot(
tf.cast(labels, tf.int32),
depth=vocab_size,
on_value=confidence,
off_value=low_confidence)
xentropy = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=soft_targets)
# Calculate the best (lowest) possible value of cross entropy, and
# subtract from the cross entropy loss.
normalizing_constant = -(
confidence * tf.math.log(confidence) +
tf.cast(vocab_size - 1, tf.float32) * low_confidence *
tf.math.log(low_confidence + 1e-20))
xentropy -= normalizing_constant
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
return xentropy * weights, weights
def padded_accuracy(logits, labels):
"""Percentage of times that predictions matches labels on non-0s."""
with tf.name_scope("padded_accuracy"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
return tf.cast(tf.equal(outputs, padded_labels), tf.float32), weights
def padded_accuracy_topk(logits, labels, k):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.name_scope("padded_accuracy_topk"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
effective_k = tf.minimum(k, tf.shape(logits)[-1])
_, outputs = tf.nn.top_k(logits, k=effective_k)
outputs = tf.cast(outputs, tf.int32)
padded_labels = tf.cast(labels, tf.int32)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.cast(tf.equal(outputs, padded_labels), tf.float32)
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights
def padded_accuracy_top5(logits, labels):
return padded_accuracy_topk(logits, labels, 5)
def padded_sequence_accuracy(logits, labels):
"""Percentage of times that predictions matches labels everywhere (non-0)."""
with tf.name_scope("padded_sequence_accuracy"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
not_correct = tf.cast(tf.not_equal(outputs, padded_labels),
tf.float32) * weights
axis = list(range(1, len(outputs.get_shape())))
correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis))
return correct_seq, tf.constant(1.0)
def padded_neg_log_perplexity(logits, labels, vocab_size):
"""Average log-perplexity excluding padding 0s. No smoothing."""
num, den = padded_cross_entropy_loss(logits, labels, 0, vocab_size)
return -num, den
class MetricLayer(tf.keras.layers.Layer):
"""Custom a layer of metrics for Transformer model."""
def __init__(self, vocab_size):
super(MetricLayer, self).__init__()
self.vocab_size = vocab_size
self.metric_mean_fns = []
def build(self, input_shape):
""""Builds metric layer."""
neg_log_perplexity = functools.partial(
padded_neg_log_perplexity, vocab_size=self.vocab_size)
self.metric_mean_fns = [
(tf.keras.metrics.Mean("accuracy"), padded_accuracy),
(tf.keras.metrics.Mean("accuracy_top5"), padded_accuracy_top5),
(tf.keras.metrics.Mean("accuracy_per_sequence"),
padded_sequence_accuracy),
(tf.keras.metrics.Mean("neg_log_perplexity"), neg_log_perplexity),
]
super(MetricLayer, self).build(input_shape)
def get_config(self):
return {"vocab_size": self.vocab_size}
def call(self, inputs):
logits, targets = inputs[0], inputs[1]
for mean, fn in self.metric_mean_fns:
m = mean(*fn(logits, targets))
self.add_metric(m)
return logits
def transformer_loss(logits, labels, smoothing, vocab_size):
"""Calculates total loss containing cross entropy with padding ignored.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
A scalar float tensor for loss.
"""
xentropy, weights = padded_cross_entropy_loss(logits, labels, smoothing,
vocab_size)
return tf.reduce_sum(xentropy) / tf.reduce_sum(weights)