forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_classifier.py
497 lines (430 loc) · 17.8 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification or regression finetuning runner in TF 2.x."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import json
import math
import os
from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf
from official.modeling import performance
from official.nlp import optimization
from official.nlp.bert import bert_models
from official.nlp.bert import common_flags
from official.nlp.bert import configs as bert_configs
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
flags.DEFINE_enum(
'mode', 'train_and_eval', ['train_and_eval', 'export_only', 'predict'],
'One of {"train_and_eval", "export_only", "predict"}. `train_and_eval`: '
'trains the model and evaluates in the meantime. '
'`export_only`: will take the latest checkpoint inside '
'model_dir and export a `SavedModel`. `predict`: takes a checkpoint and '
'restores the model to output predictions on the test set.')
flags.DEFINE_string('train_data_path', None,
'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
'Path to evaluation data for BERT classifier.')
flags.DEFINE_string(
'input_meta_data_path', None,
'Path to file that contains meta data about input '
'to be used for training and evaluation.')
flags.DEFINE_string('predict_checkpoint_path', None,
'Path to the checkpoint for predictions.')
flags.DEFINE_integer(
'num_eval_per_epoch', 1,
'Number of evaluations per epoch. The purpose of this flag is to provide '
'more granular evaluation scores and checkpoints. For example, if original '
'data has N samples and num_eval_per_epoch is n, then each epoch will be '
'evaluated every N/n samples.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}
def get_loss_fn(num_classes):
"""Gets the classification loss function."""
def classification_loss_fn(labels, logits):
"""Classification loss."""
labels = tf.squeeze(labels)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(
tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(
tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
return tf.reduce_mean(per_example_loss)
return classification_loss_fn
def get_dataset_fn(input_file_pattern,
max_seq_length,
global_batch_size,
is_training,
label_type=tf.int64,
include_sample_weights=False):
"""Gets a closure to create a dataset."""
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
batch_size = ctx.get_per_replica_batch_size(
global_batch_size) if ctx else global_batch_size
dataset = input_pipeline.create_classifier_dataset(
tf.io.gfile.glob(input_file_pattern),
max_seq_length,
batch_size,
is_training=is_training,
input_pipeline_context=ctx,
label_type=label_type,
include_sample_weights=include_sample_weights)
return dataset
return _dataset_fn
def run_bert_classifier(strategy,
bert_config,
input_meta_data,
model_dir,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
warmup_steps,
initial_lr,
init_checkpoint,
train_input_fn,
eval_input_fn,
training_callbacks=True,
custom_callbacks=None,
custom_metrics=None):
"""Run BERT classifier training using low-level API."""
max_seq_length = input_meta_data['max_seq_length']
num_classes = input_meta_data.get('num_labels', 1)
is_regression = num_classes == 1
def _get_classifier_model():
"""Gets a classifier model."""
classifier_model, core_model = (
bert_models.classifier_model(
bert_config,
num_classes,
max_seq_length,
hub_module_url=FLAGS.hub_module_url,
hub_module_trainable=FLAGS.hub_module_trainable))
optimizer = optimization.create_optimizer(initial_lr,
steps_per_epoch * epochs,
warmup_steps, FLAGS.end_lr,
FLAGS.optimizer_type)
classifier_model.optimizer = performance.configure_optimizer(
optimizer,
use_float16=common_flags.use_float16(),
use_graph_rewrite=common_flags.use_graph_rewrite())
return classifier_model, core_model
# tf.keras.losses objects accept optional sample_weight arguments (eg. coming
# from the dataset) to compute weighted loss, as used for the regression
# tasks. The classification tasks, using the custom get_loss_fn don't accept
# sample weights though.
loss_fn = (tf.keras.losses.MeanSquaredError() if is_regression
else get_loss_fn(num_classes))
# Defines evaluation metrics function, which will create metrics in the
# correct device and strategy scope.
if custom_metrics:
metric_fn = custom_metrics
elif is_regression:
metric_fn = functools.partial(
tf.keras.metrics.MeanSquaredError,
'mean_squared_error',
dtype=tf.float32)
else:
metric_fn = functools.partial(
tf.keras.metrics.SparseCategoricalAccuracy,
'accuracy',
dtype=tf.float32)
# Start training using Keras compile/fit API.
logging.info('Training using TF 2.x Keras compile/fit API with '
'distribution strategy.')
return run_keras_compile_fit(
model_dir,
strategy,
_get_classifier_model,
train_input_fn,
eval_input_fn,
loss_fn,
metric_fn,
init_checkpoint,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
training_callbacks=training_callbacks,
custom_callbacks=custom_callbacks)
def run_keras_compile_fit(model_dir,
strategy,
model_fn,
train_input_fn,
eval_input_fn,
loss_fn,
metric_fn,
init_checkpoint,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
training_callbacks=True,
custom_callbacks=None):
"""Runs BERT classifier model using Keras compile/fit API."""
with strategy.scope():
training_dataset = train_input_fn()
evaluation_dataset = eval_input_fn() if eval_input_fn else None
bert_model, sub_model = model_fn()
optimizer = bert_model.optimizer
if init_checkpoint:
checkpoint = tf.train.Checkpoint(model=sub_model)
checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
if not isinstance(metric_fn, (list, tuple)):
metric_fn = [metric_fn]
bert_model.compile(
optimizer=optimizer,
loss=loss_fn,
metrics=[fn() for fn in metric_fn],
experimental_steps_per_execution=steps_per_loop)
summary_dir = os.path.join(model_dir, 'summaries')
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
checkpoint = tf.train.Checkpoint(model=bert_model, optimizer=optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
directory=model_dir,
max_to_keep=None,
step_counter=optimizer.iterations,
checkpoint_interval=0)
checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
if training_callbacks:
if custom_callbacks is not None:
custom_callbacks += [summary_callback, checkpoint_callback]
else:
custom_callbacks = [summary_callback, checkpoint_callback]
history = bert_model.fit(
x=training_dataset,
validation_data=evaluation_dataset,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_steps=eval_steps,
callbacks=custom_callbacks)
stats = {'total_training_steps': steps_per_epoch * epochs}
if 'loss' in history.history:
stats['train_loss'] = history.history['loss'][-1]
if 'val_accuracy' in history.history:
stats['eval_metrics'] = history.history['val_accuracy'][-1]
return bert_model, stats
def get_predictions_and_labels(strategy,
trained_model,
eval_input_fn,
return_probs=False):
"""Obtains predictions of trained model on evaluation data.
Note that list of labels is returned along with the predictions because the
order changes on distributing dataset over TPU pods.
Args:
strategy: Distribution strategy.
trained_model: Trained model with preloaded weights.
eval_input_fn: Input function for evaluation data.
return_probs: Whether to return probabilities of classes.
Returns:
predictions: List of predictions.
labels: List of gold labels corresponding to predictions.
"""
@tf.function
def test_step(iterator):
"""Computes predictions on distributed devices."""
def _test_step_fn(inputs):
"""Replicated predictions."""
inputs, labels = inputs
logits = trained_model(inputs, training=False)
probabilities = tf.nn.softmax(logits)
return probabilities, labels
outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
# outputs: current batch logits as a tuple of shard logits
outputs = tf.nest.map_structure(strategy.experimental_local_results,
outputs)
labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
return outputs, labels
def _run_evaluation(test_iterator):
"""Runs evaluation steps."""
preds, golds = list(), list()
try:
with tf.experimental.async_scope():
while True:
probabilities, labels = test_step(test_iterator)
for cur_probs, cur_labels in zip(probabilities, labels):
if return_probs:
preds.extend(cur_probs.numpy().tolist())
else:
preds.extend(tf.math.argmax(cur_probs, axis=1).numpy())
golds.extend(cur_labels.numpy().tolist())
except (StopIteration, tf.errors.OutOfRangeError):
tf.experimental.async_clear_error()
return preds, golds
test_iter = iter(
strategy.experimental_distribute_datasets_from_function(eval_input_fn))
predictions, labels = _run_evaluation(test_iter)
return predictions, labels
def export_classifier(model_export_path, input_meta_data, bert_config,
model_dir):
"""Exports a trained model as a `SavedModel` for inference.
Args:
model_export_path: a string specifying the path to the SavedModel directory.
input_meta_data: dictionary containing meta data about input and model.
bert_config: Bert configuration file to define core bert layers.
model_dir: The directory where the model weights and training/evaluation
summaries are stored.
Raises:
Export path is not specified, got an empty string or None.
"""
if not model_export_path:
raise ValueError('Export path is not specified: %s' % model_export_path)
if not model_dir:
raise ValueError('Export path is not specified: %s' % model_dir)
# Export uses float32 for now, even if training uses mixed precision.
tf.keras.mixed_precision.experimental.set_policy('float32')
classifier_model = bert_models.classifier_model(
bert_config, input_meta_data.get('num_labels', 1))[0]
model_saving_utils.export_bert_model(
model_export_path, model=classifier_model, checkpoint_dir=model_dir)
def run_bert(strategy,
input_meta_data,
model_config,
train_input_fn=None,
eval_input_fn=None,
init_checkpoint=None,
custom_callbacks=None,
custom_metrics=None):
"""Run BERT training."""
# Enables XLA in Session Config. Should not be set for TPU.
keras_utils.set_session_config(FLAGS.enable_xla)
performance.set_mixed_precision_policy(common_flags.dtype())
epochs = FLAGS.num_train_epochs * FLAGS.num_eval_per_epoch
train_data_size = (
input_meta_data['train_data_size'] // FLAGS.num_eval_per_epoch)
steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
eval_steps = int(
math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
if not strategy:
raise ValueError('Distribution strategy has not been specified.')
if not custom_callbacks:
custom_callbacks = []
if FLAGS.log_steps:
custom_callbacks.append(
keras_utils.TimeHistory(
batch_size=FLAGS.train_batch_size,
log_steps=FLAGS.log_steps,
logdir=FLAGS.model_dir))
trained_model, _ = run_bert_classifier(
strategy,
model_config,
input_meta_data,
FLAGS.model_dir,
epochs,
steps_per_epoch,
FLAGS.steps_per_loop,
eval_steps,
warmup_steps,
FLAGS.learning_rate,
init_checkpoint or FLAGS.init_checkpoint,
train_input_fn,
eval_input_fn,
custom_callbacks=custom_callbacks,
custom_metrics=custom_metrics)
if FLAGS.model_export_path:
model_saving_utils.export_bert_model(
FLAGS.model_export_path, model=trained_model)
return trained_model
def custom_main(custom_callbacks=None, custom_metrics=None):
"""Run classification or regression.
Args:
custom_callbacks: list of tf.keras.Callbacks passed to training loop.
custom_metrics: list of metrics passed to the training loop.
"""
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
input_meta_data = json.loads(reader.read().decode('utf-8'))
label_type = LABEL_TYPES_MAP[input_meta_data.get('label_type', 'int')]
include_sample_weights = input_meta_data.get('has_sample_weights', False)
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.mode == 'export_only':
export_classifier(FLAGS.model_export_path, input_meta_data, bert_config,
FLAGS.model_dir)
return
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
eval_input_fn = get_dataset_fn(
FLAGS.eval_data_path,
input_meta_data['max_seq_length'],
FLAGS.eval_batch_size,
is_training=False,
label_type=label_type,
include_sample_weights=include_sample_weights)
if FLAGS.mode == 'predict':
with strategy.scope():
classifier_model = bert_models.classifier_model(
bert_config, input_meta_data['num_labels'])[0]
checkpoint = tf.train.Checkpoint(model=classifier_model)
latest_checkpoint_file = (
FLAGS.predict_checkpoint_path or
tf.train.latest_checkpoint(FLAGS.model_dir))
assert latest_checkpoint_file
logging.info('Checkpoint file %s found and restoring from '
'checkpoint', latest_checkpoint_file)
checkpoint.restore(
latest_checkpoint_file).assert_existing_objects_matched()
preds, _ = get_predictions_and_labels(
strategy, classifier_model, eval_input_fn, return_probs=True)
output_predict_file = os.path.join(FLAGS.model_dir, 'test_results.tsv')
with tf.io.gfile.GFile(output_predict_file, 'w') as writer:
logging.info('***** Predict results *****')
for probabilities in preds:
output_line = '\t'.join(
str(class_probability)
for class_probability in probabilities) + '\n'
writer.write(output_line)
return
if FLAGS.mode != 'train_and_eval':
raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
train_input_fn = get_dataset_fn(
FLAGS.train_data_path,
input_meta_data['max_seq_length'],
FLAGS.train_batch_size,
is_training=True,
label_type=label_type,
include_sample_weights=include_sample_weights)
run_bert(
strategy,
input_meta_data,
bert_config,
train_input_fn,
eval_input_fn,
custom_callbacks=custom_callbacks,
custom_metrics=custom_metrics)
def main(_):
custom_main(custom_callbacks=None, custom_metrics=None)
if __name__ == '__main__':
flags.mark_flag_as_required('bert_config_file')
flags.mark_flag_as_required('input_meta_data_path')
flags.mark_flag_as_required('model_dir')
app.run(main)