forked from ProAlgos/ProAlgos-Cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ternary_search.hpp
184 lines (162 loc) · 6.78 KB
/
ternary_search.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
Ternary search
--------------
A searching algorithm that finds the index of a maximum (or minimum) value
within an unimodal array.
Time complexity
---------------
O(log(N)), where N is the number of elements in the array.
Space complexity
----------------
O(1).
*/
#ifndef TERNARY_SEARCH_HPP
#define TERNARY_SEARCH_HPP
#include <iostream>
#include <vector>
#include <functional>
enum Pattern {
ASCEND_THEN_DESCEND,
DESCEND_THEN_ASCEND
};
/*
ternary_search
--------------
If the values in the given array first ascend and then descend, this
function finds the index of the maximum value. Otherwise, if they first
descend and then ascend, it finds the index of the minimum value.
*/
template <typename T>
size_t ternary_search(const std::vector<T>& values, const Pattern& pattern) {
// left and right are the edges of the interval of search
size_t left = 0;
size_t right = values.size() - 1;
bool changed = true;
size_t mid1, mid2;
while (right - left > 1 and changed) { // if the interval is not shrinking,
// its size already equals O(1)
changed = false;
mid1 = left + (right - left) / 3;
mid2 = right - (right - left) / 3;
if ((pattern and values[mid1] < values[mid2])
or (!pattern and values[mid1] > values[mid2])) {
changed |= (right != mid2);
right = mid2;
}
else {
changed |= (left != mid1);
left = mid1;
}
}
T min_value = values[left];
T max_value = values[left];
size_t min_index = left;
size_t max_index = left;
for (size_t index = left + 1; index <= right; index++) {
if (min_value > values[index]) {
min_value = values[index];
min_index = index;
}
if (max_value < values[index]) {
max_value = values[index];
max_index = index;
}
}
return pattern == ASCEND_THEN_DESCEND ? max_index : min_index;
}
/*
ternary_search given a function and an integral interval
--------------------------------------------------------
If the given function f first ascends and then descends (pattern == ASCEND_THEN_DESCEND)
, this function finds the integral value x for which f(x) is maximum on the interval [start, end].
Otherwise, this function finds the integral value x for which f(x) is minimum on the interval [start, end].
*/
template <typename F, typename T,
std::enable_if_t<std::is_integral<T>::value, int> = 0>
T ternary_search(F f, T start, T end, const Pattern& pattern) {
T start_third, end_third;
// Shrink the search range by a third of the size at every iteration until
// the distance between start and end is below 3.
while ((end - start) > 2) {
// Compute the points at one third and two thirds of the distance from start and end
start_third = start + (end - start) / 3;
end_third = end - (end - start) / 3;
const bool end_bigger = f(start_third) < f(end_third);
// If the function is ascending then descending then if f(end_third) is bigger then f(start_third)
// that means that the maximum of the function cannot be between start and start_third and thus
// the search range can be reduced to start_third and end; if f(start_third) is bigger then the
// that the maximum of the function cannot be between end_third and end and thus
// the search range can be reduced to start and end_third
// The behavior is reversed for a function descending and then ascending
if ((ASCEND_THEN_DESCEND == pattern && end_bigger)
|| (DESCEND_THEN_ASCEND == pattern && !end_bigger)) {
start = start_third;
}
else {
end = end_third;
}
}
// If start is equal to end, the extremum index was found
if (start == end) {
return start;
}
// Iterate through the shrank search range to find the extrema and their indexes
auto max_value = f(end);
auto min_value = f(end);
T max_x = end;
T min_x = end;
for (T i = start; i < end ; ++i) {
auto f_value = f(i);
if (f_value > max_value) {
max_value = f_value;
max_x = i;
}
else if (min_value > f_value) {
min_value = f_value;
min_x = i;
}
}
// If the function is ascending then descending, the maximum index should be returned otherwise the minimum index
return pattern == ASCEND_THEN_DESCEND ? max_x : min_x;
}
/*
ternary_search given a function and an floating point interval
--------------------------------------------------------
If the given function f first ascends and then descends (pattern == ASCEND_THEN_DESCEND)
, this function finds the value x for which f(x) is maximum on the interval [start, end]
with a tolerance of abs_precision (or when the algorithm stops converging).
Otherwise, this function finds the value x for which f(x) is minimum on the interval [start, end].
*/
template <typename F, typename T,
std::enable_if_t<std::is_floating_point<T>::value, int> = 0>
T ternary_search(F f, T start, T end, const Pattern& pattern, const T abs_precision) {
T start_third, end_third;
bool changed = true;
// Shrink the search range by a third of the size at every iteration until
// the distance between start and end is below the desired_absolute precision
// or the search range does not change anymore
while (((end - start) > abs_precision) && changed) {
// Compute the points at one third and two thirds of the distance from start and end
start_third = start + (end - start) / 3.0;
end_third = end - (end - start) / 3.0;
const bool end_bigger = f(start_third) < f(end_third);
// If the function is ascending then descending then if f(end_third) is bigger then f(start_third)
// that means that the maximum of the function cannot be between start and start_third and thus
// the search range can be reduced to start_third and end; if f(start_third) is bigger then the
// that the maximum of the function cannot be between end_third and end and thus
// the search range can be reduced to start and end_third
// The behavior is reversed for a function descending and then ascending
if ((ASCEND_THEN_DESCEND == pattern && end_bigger)
|| (DESCEND_THEN_ASCEND == pattern && !end_bigger)) {
changed = (start != start_third);
start = start_third;
}
else {
changed = (end != end_third);
end = end_third;
}
}
// returns the midpoint of the extrema index result range
return (start + end) / 2.0;
}
#endif // TERNARY_SEARCH_HPP