diff --git a/integrations/chroma/src/haystack_integrations/components/retrievers/chroma/retriever.py b/integrations/chroma/src/haystack_integrations/components/retrievers/chroma/retriever.py index 7ae3b26f4..55ae23e64 100644 --- a/integrations/chroma/src/haystack_integrations/components/retrievers/chroma/retriever.py +++ b/integrations/chroma/src/haystack_integrations/components/retrievers/chroma/retriever.py @@ -80,4 +80,4 @@ def run( top_k = top_k or self.top_k query_embeddings = [query_embedding] - return {"documents": self.document_store.search_embeddings(query_embeddings, top_k, filters)[0]} \ No newline at end of file + return {"documents": self.document_store.search_embeddings(query_embeddings, top_k, filters)[0]} diff --git a/integrations/chroma/src/haystack_integrations/document_stores/chroma/document_store.py b/integrations/chroma/src/haystack_integrations/document_stores/chroma/document_store.py index 522de8bfe..4c0b3c480 100644 --- a/integrations/chroma/src/haystack_integrations/document_stores/chroma/document_store.py +++ b/integrations/chroma/src/haystack_integrations/document_stores/chroma/document_store.py @@ -24,7 +24,11 @@ class ChromaDocumentStore: """ def __init__( - self, collection_name: str = "documents", embedding_function: str = "default", persist_path: str = None, **embedding_function_params + self, + collection_name: str = "documents", + embedding_function: str = "default", + persist_path: Optional[str] = None, + **embedding_function_params, ): """ Initializes the store. The __init__ constructor is not part of the Store Protocol @@ -40,7 +44,10 @@ def __init__( self._embedding_function = embedding_function self._embedding_function_params = embedding_function_params # Create the client instance - self._chroma_client = chromadb.Client() if persist_path == None else chromadb.PersistentClient(path=persist_path) + if persist_path is None: + self._chroma_client = chromadb.Client() + else: + self._chroma_client = chromadb.PersistentClient(path=persist_path) self._collection = self._chroma_client.get_or_create_collection( name=collection_name, embedding_function=get_embedding_function(embedding_function, **embedding_function_params), @@ -185,25 +192,31 @@ def search(self, queries: List[str], top_k: int) -> List[List[Document]]: ) return self._query_result_to_documents(results) - def search_embeddings(self, query_embeddings: List[List[float]], top_k: int, filters: Optional[Dict[str, Any]] = None) -> List[List[Document]]: + def search_embeddings( + self, query_embeddings: List[List[float]], top_k: int, filters: Optional[Dict[str, Any]] = None + ) -> List[List[Document]]: """ Perform vector search on the stored document, pass the embeddings of the queries instead of their text. Accepts filters in haystack format. """ - if filters is not None: - chroma_filters = self._normalize_filters(filters=filters) + if filters is None: + results = self._collection.query( + query_embeddings=query_embeddings, + n_results=top_k, + include=["embeddings", "documents", "metadatas", "distances"], + ) else: - chroma_filters = (None, None, None) + chroma_filters = self._normalize_filters(filters=filters) + results = self._collection.query( + query_embeddings=query_embeddings, + n_results=top_k, + where=chroma_filters[1], + where_document=chroma_filters[2], + include=["embeddings", "documents", "metadatas", "distances"], + ) - results = self._collection.query( - query_embeddings=query_embeddings, - n_results=top_k, - where=chroma_filters[1], - where_document=chroma_filters[2], - include=["embeddings", "documents", "metadatas", "distances"], - ) return self._query_result_to_documents(results) @classmethod