From 6d0874ec818047f9f4bcbb8d99f1b8b583bf85e7 Mon Sep 17 00:00:00 2001 From: Duo <50307526+iProzd@users.noreply.github.com> Date: Wed, 8 May 2024 23:17:48 +0800 Subject: [PATCH] bug: fix spin nlist in spin_model (#3718) ## Summary by CodeRabbit - **New Features** - Expanded backend support to include PyTorch and DP in the energy spin training documentation. - Updated spin settings for TensorFlow and PyTorch/DP in the energy spin training documentation. - Added new sections for loss functions and data preparation in the energy spin training documentation. - **Bug Fixes** - Adjusted test conditions and initialization parameters in various model tests to align with updated functionalities. - **Tests** - Increased selection values in permutation tests to enhance test coverage and reliability. --------- Co-authored-by: Han Wang <92130845+wanghan-iapcm@users.noreply.github.com> --- deepmd/pt/model/model/spin_model.py | 19 ++++--- doc/model/train-energy-spin.md | 63 +++++++++++++++++++-- source/tests/pt/model/test_forward_lower.py | 30 +++++++--- source/tests/pt/model/test_permutation.py | 4 +- 4 files changed, 94 insertions(+), 22 deletions(-) diff --git a/deepmd/pt/model/model/spin_model.py b/deepmd/pt/model/model/spin_model.py index 4c71344c8a..ff932bc402 100644 --- a/deepmd/pt/model/model/spin_model.py +++ b/deepmd/pt/model/model/spin_model.py @@ -170,15 +170,20 @@ def extend_nlist(extended_atype, nlist): nlist_shift = nlist + nall nlist[~nlist_mask] = -1 nlist_shift[~nlist_mask] = -1 - self_spin = torch.arange(0, nloc, dtype=nlist.dtype, device=nlist.device) + nall - self_spin = self_spin.view(1, -1, 1).expand(nframes, -1, -1) - # self spin + real neighbor + virtual neighbor + self_real = ( + torch.arange(0, nloc, dtype=nlist.dtype, device=nlist.device) + .view(1, -1, 1) + .expand(nframes, -1, -1) + ) + self_spin = self_real + nall + # real atom's neighbors: self spin + real neighbor + virtual neighbor + # nf x nloc x (1 + nnei + nnei) + real_nlist = torch.cat([self_spin, nlist, nlist_shift], dim=-1) + # spin atom's neighbors: real + real neighbor + virtual neighbor # nf x nloc x (1 + nnei + nnei) - extended_nlist = torch.cat([self_spin, nlist, nlist_shift], dim=-1) + spin_nlist = torch.cat([self_real, nlist, nlist_shift], dim=-1) # nf x (nloc + nloc) x (1 + nnei + nnei) - extended_nlist = torch.cat( - [extended_nlist, -1 * torch.ones_like(extended_nlist)], dim=-2 - ) + extended_nlist = torch.cat([real_nlist, spin_nlist], dim=-2) # update the index for switch first_part_index = (nloc <= extended_nlist) & (extended_nlist < nall) second_part_index = (nall <= extended_nlist) & (extended_nlist < (nall + nloc)) diff --git a/doc/model/train-energy-spin.md b/doc/model/train-energy-spin.md index 3eb589590b..605d3c5708 100644 --- a/doc/model/train-energy-spin.md +++ b/doc/model/train-energy-spin.md @@ -1,14 +1,35 @@ -# Fit spin energy {{ tensorflow_icon }} +# Fit spin energy {{ tensorflow_icon }} {{ pytorch_icon }} {{ dpmodel_icon }} :::{note} -**Supported backends**: TensorFlow {{ tensorflow_icon }} +**Supported backends**: TensorFlow {{ tensorflow_icon }}, PyTorch {{ pytorch_icon }}, DP {{ dpmodel_icon }} ::: -In this section, we will take `$deepmd_source_dir/examples/NiO/se_e2_a/input.json` as an example of the input file. +To train a model that takes additional spin information as input, you only need to modify the following sections to define the spin-specific settings, +keeping other sections the same as the normal energy model's input script. + +:::{warning} +Note that when adding spin into the model, there will be some implicit modifications automatically done by the program: + +- In the TensorFlow backend, the `se_e2_a` descriptor will treat those atom types with spin as new (virtual) types, + and duplicate their corresponding selected numbers of neighbors ({ref}`sel `) from their real atom types. +- In the PyTorch backend, if spin settings are added, all the types (with or without spin) will have their virtual types. + The `se_e2_a` descriptor will thus double the {ref}`sel ` list, + while in other descriptors with mixed types (such as `dpa1` or `dpa2`), the sel number will not be changed for clarity. + If you are using descriptors with mixed types, to achieve better performance, + you should manually extend your sel number (maybe double) depending on the balance between performance and efficiency. + ::: ## Spin -The construction of the fitting net is give by section {ref}`spin ` +The spin settings are given by the {ref}`spin ` section, which sets the magnetism for each type of atoms as described in the following sections. + +:::{note} +Note that the construction of spin settings is different between TensorFlow and PyTorch/DP. +::: + +### Spin settings in TensorFlow + +The implementation in TensorFlow only supports `se_e2_a` descriptor. See examples in `$deepmd_source_dir/examples/spin/se_e2_a/input_tf.json`, the {ref}`spin ` section is defined as the following: ```json "spin" : { @@ -18,10 +39,38 @@ The construction of the fitting net is give by section {ref}`spin ` }, ``` -- {ref}`use_spin ` determines whether to turn on the magnetism of the atoms.The index of this option matches option `type_map `. +- {ref}`use_spin ` is a list of boolean values indicating whether to use atomic spin for each atom type. + True for spin and False for not. The index of this option matches option `type_map `. - {ref}`virtual_len ` specifies the distance between virtual atom and the belonging real atom. - {ref}`spin_norm ` gives the magnitude of the magnetic moment for each magnatic atom. +### Spin settings in PyTorch/DP + +In PyTorch/DP, the spin implementation is more flexible and so far supports the following descriptors: + +- `se_e2_a` +- `dpa1`(`se_atten`) +- `dpa2` + +See `se_e2_a` examples in `$deepmd_source_dir/examples/spin/se_e2_a/input_torch.json`, the {ref}`spin ` section is defined as the following with a much more clear interface: + +```json + "spin": { + "use_spin": [true, false], + "virtual_scale": [0.3140] + }, +``` + +- {ref}`use_spin ` is a list of boolean values indicating whether to use atomic spin for each atom type, or a list of type indexes that use atomic spin. + The index of this option matches option `type_map `. +- {ref}`virtual_len ` defines the scaling factor to determine the virtual distance + between a virtual atom representing spin and its corresponding real atom + for each atom type with spin. This factor is defined as the virtual distance + divided by the magnitude of atomic spin for each atom type with spin. + The virtual coordinate is defined as the real coordinate plus spin \* virtual_scale. + List of float values with shape of `ntypes` or `ntypes_spin` or one single float value for all types, + only used when {ref}`use_spin ` is True for each atom type. + ## Spin Loss The spin loss function $L$ for training energy is given by @@ -59,3 +108,7 @@ The {ref}`loss ` section in the `input.json` is The options {ref}`start_pref_e `, {ref}`limit_pref_e `, {ref}`start_pref_fr `, {ref}`limit_pref_fm `, {ref}`start_pref_v ` and {ref}`limit_pref_v ` determine the start and limit prefactors of energy, atomic force, magnatic force and virial, respectively. If one does not want to train with virial, then he/she may set the virial prefactors {ref}`start_pref_v ` and {ref}`limit_pref_v ` to 0. + +## Data preparation + +(Need a documentation for data format for TensorFlow and PyTorch/DP.) diff --git a/source/tests/pt/model/test_forward_lower.py b/source/tests/pt/model/test_forward_lower.py index 32be3b62ad..c43c4baea2 100644 --- a/source/tests/pt/model/test_forward_lower.py +++ b/source/tests/pt/model/test_forward_lower.py @@ -82,7 +82,9 @@ def test( ) = extend_input_and_build_neighbor_list( coord.unsqueeze(0), atype.unsqueeze(0), - self.model.get_rcut(), + self.model.get_rcut() + 1.0 + if test_spin + else self.model.get_rcut(), # buffer region for spin nlist self.model.get_sel(), mixed_types=self.model.mixed_types(), box=cell.unsqueeze(0), @@ -128,7 +130,6 @@ class TestEnergyModelSeA(unittest.TestCase, ForwardLowerTest): def setUp(self): self.prec = 1e-10 model_params = copy.deepcopy(model_se_e2_a) - self.type_split = False self.model = get_model(model_params).to(env.DEVICE) @@ -136,7 +137,6 @@ class TestEnergyModelDPA1(unittest.TestCase, ForwardLowerTest): def setUp(self): self.prec = 1e-10 model_params = copy.deepcopy(model_dpa1) - self.type_split = True self.model = get_model(model_params).to(env.DEVICE) @@ -151,7 +151,6 @@ def setUp(self): "repinit_nsel" ] model_params = copy.deepcopy(model_dpa2) - self.type_split = True self.model = get_model(model_params).to(env.DEVICE) @@ -159,16 +158,31 @@ class TestEnergyModelZBL(unittest.TestCase, ForwardLowerTest): def setUp(self): self.prec = 1e-10 model_params = copy.deepcopy(model_zbl) - self.type_split = False self.model = get_model(model_params).to(env.DEVICE) class TestEnergyModelSpinSeA(unittest.TestCase, ForwardLowerTest): def setUp(self): - # still need to figure out why only 1e-5 rtol and atol - self.prec = 1e-5 + self.prec = 1e-10 + model_params = copy.deepcopy(model_spin) + self.test_spin = True + self.model = get_model(model_params).to(env.DEVICE) + + +class TestEnergyModelSpinDPA1(unittest.TestCase, ForwardLowerTest): + def setUp(self): + self.prec = 1e-10 + model_params = copy.deepcopy(model_spin) + model_params["descriptor"] = copy.deepcopy(model_dpa1)["descriptor"] + self.test_spin = True + self.model = get_model(model_params).to(env.DEVICE) + + +class TestEnergyModelSpinDPA2(unittest.TestCase, ForwardLowerTest): + def setUp(self): + self.prec = 1e-10 model_params = copy.deepcopy(model_spin) - self.type_split = False + model_params["descriptor"] = copy.deepcopy(model_dpa2)["descriptor"] self.test_spin = True self.model = get_model(model_params).to(env.DEVICE) diff --git a/source/tests/pt/model/test_permutation.py b/source/tests/pt/model/test_permutation.py index b4cd133200..6159de199a 100644 --- a/source/tests/pt/model/test_permutation.py +++ b/source/tests/pt/model/test_permutation.py @@ -116,10 +116,10 @@ "type": "dpa2", "repinit_rcut": 6.0, "repinit_rcut_smth": 2.0, - "repinit_nsel": 30, + "repinit_nsel": 100, "repformer_rcut": 4.0, "repformer_rcut_smth": 0.5, - "repformer_nsel": 20, + "repformer_nsel": 40, "repinit_neuron": [2, 4, 8], "repinit_axis_neuron": 4, "repinit_activation": "tanh",